Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents the design and optimization of a cable-driven parallel polishing robot (CDPPR) with kinematic error modeling and introduces an improved nondominated sorting genetic algorithm II (NSGA-II) for multiobjective optimization. First, the mechanical design and kinematic and static modeling of the CDPPR are conducted. Subsequently, a kinematic error transfer model is established based on the evidence theory by considering the change of exit points of cables, and an error index is derived to measure the accuracy of the robot. Besides, another two performance indices including the workspace and static stiffness are proposed. Thus, a multiobjective optimization model is established to optimize the workspace, static stiffness, and error index, and an improved NSGA-II is developed. Finally, an experimental scaled prototype of the CDPPR is constructed, and numerical examples and experimental results demonstrate the effectiveness of the improved NSGA-II and the stability of the optimal configuration.

References

1.
Xiong
,
H.
,
Cao
,
H.
,
Zeng
,
W.
,
Huang
,
J.
,
Diao
,
X.
,
Lu
,
W.
, and
Lou
,
Y.
,
2022
, “
Real-Time Reconfiguration Planning for the Dynamic Control of Reconfigurable Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060913
.
2.
Ida
,
E.
,
Briot
,
S.
, and
Carricato
,
M.
,
2022
, “
Identification of the Inertial Parameters of Underactuated Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
167
, p.
104504
.
3.
Liu
,
F.
,
Xu
,
W.
,
Huang
,
H.
,
Ning
,
Y.
, and
Li
,
B.
,
2019
, “
Design and Analysis of a High-Payload Manipulator Based on a Cable-Driven Serial-Parallel Mechanism
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051006
.
4.
Lau
,
D.
, and
Oetomo
,
D.
,
2016
, “
Conditions on the Cable-Routing Matrix for Wrench Closure of Multilink Cable-Driven Manipulators
,”
ASME J. Mech. Des.
,
138
(
3
), p.
032303
.
5.
Martin-Parra
,
A.
,
Juarez-Perez
,
S.
,
Gonzalez-Rodriguez
,
A.
,
Gonzalez-Rodriguez
,
A. G.
,
Lopez-Diaz
,
A. I.
, and
Rubio-Gomez
,
G.
,
2023
, “
A Novel Design for Fully Constrained Planar Cable-Driven Parallel Robots to Increase Their Wrench-Feasible Workspace
,”
Mech. Mach. Theory
,
180
, p.
105159
.
6.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031004
.
7.
Barrette
,
G.
, and
Gosselin
,
C. M.
,
2005
, “
Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
242
248
.
8.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
9.
Sancak
,
C.
, and
Itik
,
M.
,
2021
, “
Out-of-Plane Vibration Suppression and Position Control of a Planar Cable-Driven Robot
,”
IEEE ASME Trans. Mechatron.
,
27
(
3
), pp.
1311
1310
.
10.
Xu
,
F.
,
Zi
,
B.
,
Yu
,
Z.
,
Zhao
,
J.
, and
Ding
,
H.
,
2024
, “
Design and Implementation of a 7-DOF Cable-Driven Serial Spray-Painting Robot With Motion-Decoupling Mechanisms
,”
Mech. Mach. Theory
,
192
, p.
105549
.
11.
Shao
,
Z.
,
Xie
,
G.
,
Zhang
,
Z.
, and
Wang
,
L.
,
2021
, “
Design and Analysis of the Cable-Driven Parallel Robot for Cleaning Exterior Wall of Buildings
,”
Int. J. Adv. Robot. Syst.
,
18
(
1
), p.
1729881421990313
.
12.
Rogatinsky
,
J.
,
Recco
,
D.
,
Feichtmeier
,
J.
,
Kang
,
Y.
,
Kneier
,
N.
,
Hammer
,
P.
,
O'Leary
,
E.
, et al
,
2023
, “
A Multifunctional Soft Robot for Cardiac Interventions
,”
Sci. Adv.
,
9
(
43
), p.
eadi5559
.
13.
Bazman
,
M.
,
Yilmaz
,
N.
, and
Tumerdem
,
U.
,
2022
, “
An Articulated Robotic Forceps Design With a Parallel Wrist-Gripper Mechanism and Parasitic Motion Compensation
,”
ASME J. Mech. Des.
,
144
(
6
), p.
063303
.
14.
Ben Hamida
,
I.
,
Laribi
,
M. A.
,
Mlika
,
A.
,
Romdhane
,
L.
,
Zeghloul
,
S.
, and
Carbone
,
G.
,
2021
, “
Multi-Objective Optimal Design of a Cable Driven Parallel Robot for Rehabilitation Tasks
,”
Mech. Mach. Theory
,
156
, p.
104141
.
15.
Hussein
,
H.
,
Santos
,
J. C.
,
Izard
,
J.-B.
, and
Gouttefarde
,
M.
,
2021
, “
Smallest Maximum Cable Tension Determination for Cable-Driven Parallel Robots
,”
IEEE Trans. Robot.
,
37
(
4
), pp.
1186
1205
.
16.
Tan
,
S.
,
Yang
,
J.
, and
Ding
,
H.
,
2023
, “
A Prediction and Compensation Method of Robot Tracking Error Considering Pose-Dependent Load Decomposition
,”
Robot. Comput.-Integr. Manuf.
,
80
, p.
102476
.
17.
Yao
,
R.
,
Tang
,
X.
,
Wang
,
J.
, and
Huang
,
P.
,
2010
, “
Dimensional Optimization Design of the Four-Cable-Driven Parallel Manipulator in FAST
,”
IEEE/ASME Trans. Mechatron.
,
15
(
6
), pp.
932
941
.
18.
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2020
, “
Optimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
145
, p.
103693
.
19.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2021
, “
Design and Optimization of Three-Degree-of-Freedom Planar Adaptive Cable-Driven Parallel Robots Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory
,
166
, p.
104475
.
20.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G. L.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I. M.
,
2006
, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
1
), pp.
53
69
.
21.
Wu
,
L.
,
Crawford
,
R.
, and
Roberts
,
J.
,
2017
, “
Dexterity Analysis of Three 6-DOF Continuum Robots Combining Concentric Tube Mechanisms and Cable-Driven Mechanisms
,”
IEEE Robot. Autom. Lett.
,
2
(
2
), pp.
514
521
.
22.
Cui
,
Z.
,
Tang
,
X.
,
Hou
,
S.
, and
Sun
,
H.
,
2018
, “
Research on Controllable Stiffness of Redundant Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2390
2401
.
23.
Ji
,
H.
,
Shang
,
W.
, and
Cong
,
S.
,
2021
, “
Adaptive Synchronization Control of Cable-Driven Parallel Robots With Uncertain Kinematics and Dynamics
,”
IEEE Trans. Ind. Electron.
,
68
(
9
), pp.
8444
8454
.
24.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am. (Int. Edition)
,
267
(
1
), pp.
44
50
.
25.
Venter
,
G.
, and
Sobieszczanski-Sobieski
,
J.
,
2003
, “
Particle Swarm Optimization
,”
AIAA J.
,
41
(
8
), pp.
1583
1589
.
26.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Softw.
,
95
, pp.
51
67
.
27.
Zhou
,
B.
,
Li
,
S.
,
Zi
,
B.
,
Chen
,
B.
, and
Zhu
,
W.
,
2023
, “
Multi-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm
,”
ASME J. Mech. Des.
,
145
(
8
), p.
083301
.
28.
Guo
,
X.
,
Zhou
,
Z.
, and
Wang
,
Q.
,
2023
, “
Multi-Objective Optimization and Performance Analysis of 3-RPR Parallel Mechanism in Robotic Brace
,”
Mechatronics
,
95
, p.
103055
.
29.
Zhang
,
Z.
,
Shao
,
Z.
,
Peng
,
F.
,
Li
,
H.
, and
Wang
,
L.
,
2020
, “
Workspace Analysis and Optimal Design of a Translational Cable-Driven Parallel Robot With Passive Springs
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051005
.
30.
Gao
,
H.
,
Sun
,
G.
,
Liu
,
Z.
,
Sun
,
C.
,
Li
,
N.
,
Ding
,
L.
,
Yu
,
H.
, and
Deng
,
Z.
,
2022
, “
Tension Distribution Algorithm Based on Graphics With High Computational Efficiency and Robust Optimization for Two-Redundant Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
172
, p.
104739
.
31.
Ye
,
H.
,
Wu
,
J.
, and
Wang
,
D.
,
2022
, “
A General Approach for Geometric Error Modeling of Over-Constrained Hybrid Robot
,”
Mech. Mach. Theory
,
176
, p.
104998
.
32.
Qi
,
C.
,
Lin
,
J.
,
Liu
,
X.
,
Gao
,
F.
,
Yue
,
Y.
,
Hu
,
Y.
, and
Wei
,
B.
,
2023
, “
A Modeling Method for a 6-SPS Perpendicular Parallel Micro-Manipulation Robot Considering the Motion in Multiple Nonfunctional Directions and Nonlinear Hysteresis
,”
ASME J. Mech. Des.
,
145
(
5
), p.
053301
.
33.
Yin
,
Y.
,
Hong
,
N.
,
Fei
,
F.
,
Wei
,
X.
, and
Ni
,
H.
,
2017
, “
Nonlinear Assembly Tolerance Design for Spatial Mechanisms Based on Reliability Methods
,”
ASME J. Mech. Des.
,
139
(
3
), p.
032301
.
34.
Paty
,
T.
,
Binaud
,
N.
,
Caro
,
S.
, and
Segonds
,
S.
,
2021
, “
Cable-Driven Parallel Robot Modelling Considering Pulley Kinematics and Cable Elasticity
,”
Mech. Mach. Theory
,
159
, p.
104263
.
35.
Gao
,
J.
,
Zhou
,
B.
,
Zi
,
B.
,
Qian
,
S.
, and
Zhao
,
P.
,
2022
, “
Kinematic Uncertainty Analysis of a Cable-Driven Parallel Robot Based on an Error Transfer Model
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051008
.
You do not currently have access to this content.