Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Four-bar linkages are critical fundamental elements of many mechanical systems, and their design synthesis is often mathematically complicated with iterative numerical solutions. Analytical methods based on Fourier coefficients can circumvent these difficulties but have difficulties with sampling points adjustment and solutions of the design equations in previous studies. In this paper, an improved Fourier-based analytical synthesis method is presented, which transforms the function generation synthesis of planar four-bar linkages into a problem of solving design equations. Calculation of the Fourier coefficients is discussed, including the discretization of the prescribed function and an improved sampling points adjustment method. It is shown that the Fourier coefficients can be computed efficiently and accurately by discretizing the prescribed function with a small number of sampling points. The proposed sampling adjustment method overcomes the difficulty of easily resulting in non-Grashof solutions by considering the complete period of the prescribed function. An improved Sylvester's dialytic elimination method is presented to solve design equations. The method reduces the computation time and avoids cumbersome procedures without generating additional invalid solutions. Several examples are presented to demonstrate the advantages of the proposed synthesis method, which is easy-understanding and efficient, and yields more accurate solutions than available synthesis methods.

References

1.
Kimbrell
,
J. T.
,
1984
, “
Graphical Synthesis of a 4-Bar Mechanism
,”
Mech. Mach. Theory
,
19
(
1
), pp.
45
49
.
2.
Liu
,
W.
,
Sun
,
J.
,
Zhang
,
B.
, and
Chu
,
J.
,
2018
, “
Wavelet Feature Parameters Representations of Open Planar Curves
,”
Appl. Math. Model.
,
57
, pp.
614
624
.
3.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1967
, “
Synthesis of Plane Linkages With Use of the Displacement Matrix
,”
ASME J. Eng. Ind.
,
89
(
2
), pp.
206
214
.
4.
Freudenstein
,
F.
,
1954
, “Design of Four-Link Mechanisms,”
Ph.D. thesis
,
Columbia University
,
New York
.
5.
Freudenstein
,
F.
,
2010
, “
Approximate Synthesis of Four-Bar Linkages
,”
Resonance
,
15
(
8
), pp.
740
767
.
6.
Sandor
,
G. N.
,
1959
, “A General Complex-Number Method for Plane Kinematic Synthesis with Applications,”
Ph.D. thesis
,
Columbia University
,
New York, NY
.
7.
Sancibrian
,
R.
,
Sedano
,
A.
,
Sarabia
,
E. G.
, and
Blanco
,
J. M.
,
2019
, “
Hybridizing Differential Evolution and Local Search Optimization for Dimensional Synthesis of Linkages
,”
Mech. Mach. Theory
,
140
, pp.
389
412
.
8.
Freudenstein
,
F.
,
1959
, “
Harmonic Analysis of Crank-and-Rocker Mechanisms With Application
,”
ASME J. Appl. Mech.
,
26
(
4
), pp.
673
675
.
9.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
A Motion Synthesis Approach to Solving Alt-Burmester Problem by Exploiting Fourier Descriptor Relationship Between Path and Orientation Data
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011016
.
10.
McGarva
,
J. R.
, and
Mullineux
,
G.
,
1992
, “
A New Methodology for Rapid Synthesis of Function Generators
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
206
(
6
), pp.
391
398
.
11.
McGarva
,
J.
, and
Mullineux
,
G.
,
1993
, “
Harmonic Representation of Closed Curves
,”
Appl. Math. Model.
,
17
(
4
), pp.
213
218
.
12.
McGarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.
13.
Nie
,
X.
, and
Krovi
,
V.
,
2005
, “
Fourier Methods for Kinematic Synthesis of Coupled Serial Chain Mechanisms
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
232
241
.
14.
Mullineux
,
G.
,
2011
, “
Atlas of Spherical Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1811
1823
.
15.
Sun
,
J.
, and
Chu
,
J.
,
2010
, “
Fourier Series Representation of the Coupler Curves of Spatial Linkages
,”
Appl. Math. Model.
,
34
(
5
), pp.
1396
1403
.
16.
Sun
,
J.
,
Chu
,
J.
, and
Sun
,
B.
,
2012
, “
A Unified Model of Harmonic Characteristic Parameter Method for Dimensional Synthesis of Linkage Mechanism
,”
Appl. Math. Model.
,
36
(
12
), pp.
6001
6010
.
17.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
18.
Wu
,
J.
,
Ge
,
Q. J.
, and
Gao
,
F.
,
2009
, “
An Efficient Method for Synthesizing Crank-Rocker Mechanisms for Generating Low Harmonic Curves
,”
Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B, ASMEDC
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
531
538
.
19.
Li
,
X.
,
Wu
,
J.
, and
Ge
,
Q. J.
,
2016
, “
A Fourier Descriptor-Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064501
.
20.
Sharma
,
S.
,
Purwar
,
A.
, and
Jeffrey Ge
,
Q.
,
2019
, “
An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
014501
.
21.
Li
,
X.
,
Wei
,
S.
,
Liao
,
Q.
, and
Zhang
,
Y.
,
2016
, “
A Novel Analytical Method for Function Generation Synthesis of Planar Four-Bar Linkages
,”
Mech. Mach. Theory
,
101
, pp.
222
235
.
22.
Li
,
X.
,
Wei
,
S.
,
Liao
,
Q.
, and
Zhang
,
Y.
,
2020
, “
A Novel Analytical Method for Four-Bar Path Generation Synthesis Based on Fourier Series
,”
Mech. Mach. Theory
,
144
, pp.
103671
.
23.
Sulaiman
,
S.
,
Aris
,
N.
, and
Ahmad
,
S. N.
,
2019
, “
Efficient Alternative Method for Computing Multivariate Resultant Formulation
,”
J. Math. Fundam. Sci.
,
51
(
1
), pp.
13
28
.
24.
Chen
,
Z.
,
Chen
,
Q.
,
Jia
,
G.
, and
Dai
,
J. S.
,
2023
, “
Sylvester's Dialytic Elimination in Analysis of a Metamorphic Mechanism Derived From Ladybird Wings
,”
Mech. Mach. Theory
,
179
, pp.
105102
.
25.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
2000
, “
A Gröbner-Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
431
438
.
26.
Zhao
,
S.
, and
Fu
,
H.
,
2010
, “
Multivariate Sylvester Resultant and Extraneous Factors
,”
Sci. Sin. Math.
,
40
(
7
), pp.
649
660
.
27.
Norton
,
R. L.
,
2020
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill Education
,
New York
.
28.
Bogdan
,
R. C.
,
Larionescu
,
D.
, and
Căruţasų
,
I.
,
1969
, “
Complex Harmonic Analysis of Plane Mechanisms. Programming on Digital Computers and Experimental Examples
,”
J. Eng. Ind.
,
91
(
1
), pp.
27
36
.
29.
Nixon
,
M. S.
, and
Aguado
,
A. S.
,
2019
, “Object Description,”
Feature Extraction & Image Processing for Computer Vision
, 4th ed.,
M. S.
Nixon
, and
A. S.
Aguado
, eds.,
Academic Press
,
New York
, pp.
339
398
.
30.
Wampler
,
C. W.
,
2001
, “
Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex-Plane Formulation
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
382
387
.
31.
Wang
,
D.
,
2001
,
Elimination Methods
,
Springer
,
Vienna, Austria
.
32.
Sancibrian
,
R.
,
2011
, “
Improved GRG Method for the Optimal Synthesis of Linkages in Function Generation Problems
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1350
1375
.
33.
Hadizadeh Kafash
,
S.
, and
Nahvi
,
A.
,
2017
, “
Optimal Synthesis of Four-Bar Path Generator Linkages Using Circular Proximity Function
,”
Mech. Mach. Theory
,
115
, pp.
18
34
.
34.
Söylemez
,
E.
, and
Kiper
,
G.
,
2024
, “Four-Bar Function Generation Using Excel Solver,”
Advances in Mechanism and Machine Science
,
M.
Okada
, ed.,
Springer Nature Switzerland
,
Cham and Hall, London
, pp.
208
218
.
35.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2007
, “
Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1185
1190
.
You do not currently have access to this content.