Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Robotic hands are an important tool for replacing humans in handling toxic or radioactive materials. However, these are usually highly expensive, and in many cases, once they are contaminated, they cannot be re-used. Some solutions cope with this challenge by 3D printing parts of a tendon-based hand. However, fabrication requires additional assembly steps. Therefore, a novice user may have difficulties fabricating a hand upon contamination of the previous one. We propose the Print-N-Grip (PNG) hand, which is a tendon-based underactuated mechanism able to adapt to the shape of objects. The hand is fabricated through one-shot 3D printing with no additional engineering effort and can accommodate a number of fingers as desired by the practitioner. Due to its low cost, the PNG hand can be easily detached from a universal base for disposing upon contamination and replaced by a newly printed one. In addition, the PNG hand is scalable such that one can effortlessly resize the computerized model and print. We present the design of the PNG hand along with experiments to show the capabilities and high durability of the hand.

References

1.
Siciliano
,
B.
, and
Khatib
,
O.
,
2007
,
Springer Handbook of Robotics
,
Springer-Verlag
,
Berlin, Heidelberg
.
2.
Huang
,
J.
,
Wang
,
Q.
,
Wu
,
Z.
,
Zhang
,
J.
,
Ma
,
Z.
,
Yue
,
Y.
, and
Su
,
B.
,
2021
, “
Carbon Fabric-based Self-powered Magnetoelectric Tactile Sensors for Soft Robot’s Sensing With Resistance to Acidic/Alkaline Environments
,”
J. Mater. Chem. C
,
9
(
41
), pp.
14827
14837
.
3.
Lojans
,
Aldis
, and
Kakitis
,
Aivars
,
2012
, “
Evaluation of Environment Factors Influencing Robots in Greenhouses
,”
11th International Science Conference of Engineering for Rural Development
,
Jelgava, Latvia
.
4.
Meng
,
Q.
,
Wang
,
H.
,
Li
,
P.
,
Wang
,
L.
, and
He
,
Z.
,
2006
, “
Dexterous Underwater Robot Hand: Heu Hand II
,”
International Conference on Mechatronics and Automation
,
Luoyang, China
, pp.
1477
1482
.
5.
Garg
,
R.
,
Jayakumar
,
N.
,
Khatri
,
S.
, and
Choi
,
G.
,
2006
, “
A Design Approach for Radiation-hard Digital Electronics
,”
ACM/IEEE Design Automation Conference
,
San Francisco, CA
, pp.
773
778
.
6.
Zhang
,
K.
,
Hutson
,
C.
,
Knighton
,
J.
,
Herrmann
,
G.
, and
Scott
,
T.
,
2020
, “
Radiation Tolerance Testing Methodology of Robotic Manipulator Prior to Nuclear Waste Handling
,”
Front. Rob. AI
,
7
(
6
).
7.
Salvietti
,
G.
,
Hussain
,
I.
,
Malvezzi
,
M.
, and
Prattichizzo
,
D.
,
2017
, “
Design of the Passive Joints of Underactuated Modular Soft Hands for Fingertip Trajectory Tracking
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
2008
2015
.
8.
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2015
, “
Stable, Open-Loop Precision Manipulation With Underactuated Hands
,”
Int. J. Rob. Res.
,
34
(
11
), pp.
1347
1360
.
9.
Kim
,
Y.-J.
,
Lee
,
Y.
,
Kim
,
J.
,
Lee
,
J.-W.
,
Park
,
K.-M.
,
Roh
,
K.-S.
, and
Choi
,
J.-Y.
,
2014
, “
Roboray Hand: A Highly Backdrivable Robotic Hand With Sensorless Contact Force Measurements
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
6712
6718
.
10.
Kragten
,
G.
,
Helm
,
F. V. D.
, and
Herder
,
J.
,
2012
,
Underactuated Robotic Hands for Grasping in Warehouses
,
Springer London
,
London
, pp.
117
131
.
11.
Negrello
,
F.
,
Stuart
,
H. S.
, and
Catalano
,
M. G.
,
2020
, “
Hands in the Real World
,”
Front. Rob. AI
,
6
(
147
).
12.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2017
, “
Yale Openhand Project: Optimizing Open-Source Hand Designs for Ease of Fabrication and Adoption
,”
IEEE Rob. Aut. Mag.
,
24
(
1
), pp.
32
40
.
13.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
14.
Tuffield
,
P.
, and
Elias
,
H.
,
2003
, “
The Shadow Robot Mimics Human Actions
,”
Ind. Rob.
,
30
(
1
), pp.
56
60
.
15.
Grebenstein
,
M.
,
Chalon
,
M.
,
Friedl
,
W.
,
Haddadin
,
S.
,
Wimböck
,
T.
,
Hirzinger
,
G.
, and
Siegwart
,
R.
,
2012
, “
The Hand of the DLR Hand Arm System: Designed for Interaction
,”
Int. J. Rob. Res.
,
31
(
13
), pp.
1531
1555
.
16.
Ramos
,
A.
,
Gravagne
,
I.
, and
Walker
,
I.
,
1999
, “
Goldfinger: A Non-anthropomorphic, Dextrous Robot Hand
,”
IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
, Vol. 2, pp.
913
919
.
17.
Guo
,
M.
,
Gealy
,
D. V.
,
Liang
,
J.
,
Mahler
,
J.
,
Goncalves
,
A.
,
McKinley
,
S.
,
Ojea
,
J. A.
, and
Goldberg
,
K.
,
2017
, “
Design of Parallel-Jaw Gripper Tip Surfaces for Robust Grasping
,”
IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
2831
2838
.
18.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
.
19.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
20.
Littlefield
,
Z.
,
Zhu
,
S.
,
Kourtev
,
H.
,
Psarakis
,
Z.
,
Shome
,
R.
,
Kimmel
,
A.
,
Dobson
,
A.
,
De Souza
,
A. F.
, and
Bekris
,
K. E.
,
2016
, “
Evaluating End-Effector Modalities for Warehouse Picking: A Vacuum Gripper vs a 3-Finger Underactuated Hand
,”
IEEE International Conference on Automation Science and Engineering
,
Fort Worth, TX
,
Aug. 21–24
, pp.
1190
1195
.
21.
Smith
,
S. T.
,
Chetwynd
,
D. G.
, and
Bowen
,
D. K.
,
1987
, “
Design and Assessment of Monolithic High Precision Translation Mechanisms
,”
J. Phys. E: Sci. Instrum.
,
20
(
8
), p.
977
.
22.
Kota
,
S.
,
2001
, “
Compliant Systems Using Monolithic Mechanisms
,”
Smart Mater. Bull.
,
2001
(
3
), pp.
7
10
.
23.
Culpepper
,
M. L.
, and
Anderson
,
G.
,
2004
, “
Design of a Low-Cost Nano-manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
,
28
(
4
), pp.
469
482
.
24.
Choi
,
K.-B.
, and
Kim
,
D.-H.
,
2006
, “
Monolithic Parallel Linear Compliant Mechanism for Two Axes Ultraprecision Linear Motion
,”
Rev. Sci. Instrum.
,
77
(
6
), p.
065106
.
25.
Qin
,
Y.
,
Shirinzadeh
,
B.
,
Tian
,
Y.
,
Zhang
,
D.
, and
Bhagat
,
U.
,
2014
, “
Design and Computational Optimization of a Decoupled 2-DOF Monolithic Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
872
881
.
26.
Dao
,
P.
, and
Huang
,
S.-C.
,
2017
, “
Design and Multi-Objective Optimization for a Broad Self-amplified 2-dof Monolithic Mechanism
,”
Sādhanā
,
42
, pp.
1
16
.
27.
Howard
,
G. D.
,
Brett
,
J.
,
O’Connor
,
J.
,
Letchford
,
J.
, and
Delaney
,
G. W.
,
2022
, “
One-Shot 3D-Printed Multimaterial Soft Robotic Jamming Grippers
,”
Soft Rob.
,
9
(
3
), pp.
497
508
.
28.
Stano
,
G.
,
Ovy
,
S. M. A. I.
,
Edwards
,
J.
,
Cianchetti
,
M.
,
Percoco
,
G.
, and
Tadesse
,
Y.
,
2022
, “
One-Shot Additive Manufacturing of Robotic Finger With Embedded Sensing and Actuation
,”
Int. J. Adv. Manuf. Technol.
,
124
, pp.
1
19
.
29.
Cormack
,
J.
,
Fotouhi
,
M.
,
Adams
,
G.
, and
Pipe
,
T.
,
2021
, “
Automated Extraction of 3D Printed Parts From Unfused PA12 Powder Using a One-Shot 3D Printed Compliant Gripper
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
8655
8662
.
30.
Zolfagharian
,
A.
,
Gharaie
,
S.
,
Gregory
,
J.
,
Bodaghi
,
M.
,
Kaynak
,
A.
, and
Nahavandi
,
S.
,
2022
, “
A Bioinspired Compliant 3D-Printed Soft Gripper
,”
Soft Rob.
,
9
(
4
), pp.
680
689
.
31.
Velasquez
,
F.
,
Thomaszewski
,
B.
, and
Coros
,
S.
,
2023
, “
Computational Design of 3D-Printable Compliant Mechanisms With Bio-inspired Sliding Joints
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, pp.
7371
7377
.
32.
Qi
,
Q.
,
Xiang
,
C.
,
Ho
,
V. A.
, and
Rossiter
,
J.
,
2022
, “
A Sea-Anemone-Inspired, Multifunctional, Bistable Gripper
,”
Soft Rob.
,
9
(
6
), pp.
1040
1051
.
33.
Zhai
,
Y.
,
Boer
,
A. D.
,
Yan
,
J.
,
Shih
,
B.
,
Faber
,
M.
,
Speros
,
J.
,
Gupta
,
R.
, and
Tolley
,
M. T.
,
2023
, “
Desktop Fabrication of Monolithic Soft Robotic Devices With Embedded Fluidic Control Circuits
,”
Sci. Rob.
,
8
(
79
), p.
eadg3792
.
34.
Cormack
,
J.
,
Fotouhi
,
M.
,
Adams
,
G.
, and
Pipe
,
A.
,
2020
, “One-Shot 3D Printed Underactuated Gripper,”
Towards Autonomous Robotic Systems
,
A.
Mohammad
,
X.
Dong
, and
M.
Russo
, eds.,
Springer International Publishing
,
Switzerland
, pp.
400
404
.
35.
Zhou
,
X.
, and
Spiers
,
A. J.
,
2023
, “
InstaGrasp: An Entirely 3D Printed Adaptive Gripper With TPU Soft Elements and Minimal Assembly Time
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Detroit, MI
,
October 2023
.
36.
Deimel
,
R.
, and
Brock
,
O.
,
2013
, “
A Compliant Hand Based on a Novel Pneumatic Actuator
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
2047
2053
.
37.
Homberg
,
B. S.
,
Katzschmann
,
R. K.
,
Dogar
,
M. R.
, and
Rus
,
D.
,
2015
, “
Haptic Identification of Objects Using a Modular Soft Robotic Gripper
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
September 2015
, pp.
1698
1705
.
38.
Teeple
,
C. B.
,
Kim
,
G. R.
,
Graule
,
M. A.
, and
Wood
,
R. J.
,
2021
, “
An Active Palm Enhances Dexterity of Soft Robotic In-Hand Manipulation
,”
IEEE International Conference on Robotics and Automation
,
Xi'an, China
,
May 2021
, pp.
11790
11796
.
39.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
.
40.
Gao
,
G.
,
Chapman
,
J.
,
Matsunaga
,
S.
,
Mariyama
,
T.
,
MacDonald
,
B.
, and
Liarokapis
,
M.
,
2021
, “
A Dexterous, Reconfigurable, Adaptive Robot Hand Combining Anthropomorphic and Interdigitated Configurations
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, pp.
7209
7215
.
41.
Liu
,
L.
,
Xu
,
Y.
,
Li
,
S.
,
Xu
,
M.
,
He
,
Y.
,
Shi
,
Z.
, and
Li
,
B.
,
2019
, “
A Novel Strategy for Simultaneously Improving the Fire Safety, Water Resistance and Compatibility of Thermoplastic Polyurethane Composites Through the Construction of Biomimetic Hydrophobic Structure of Intumescent Flame Retardant Synergistic System
,”
Compos. Part B: Eng.
,
176
, p.
107218
.
42.
M’Bengue
,
M.-S.
,
Mesnard
,
T.
,
Chai
,
F.
,
Maton
,
M.
,
Gaucher
,
V.
,
Tabary
,
N.
,
García-Fernandez
,
M.-J.
,
Sobocinski
,
J.
,
Martel
,
B.
, and
Blanchemain
,
N.
,
2023
, “
Evaluation of a Medical Grade Thermoplastic Polyurethane for the Manufacture of an Implantable Medical Device: The Impact of FDM 3D-Printing and Gamma Sterilization
,”
Pharmaceutics
,
15
(
2
), p.
456
.
43.
Wang
,
L.
,
DelPreto
,
J.
,
Bhattacharyya
,
S.
,
Weisz
,
J.
, and
Allen
,
P. K.
,
2011
, “
A Highly-Underactuated Robotic Hand With Force and Joint Angle Sensors
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1380
1385
.
44.
Fletcher
,
R.
,
1987
,
Practical Methods of Optimization
, Vol.
2
,
A Wiley-Interscience Publication, Wiley
,
New York
.
45.
Sintov
,
A.
,
Morgan
,
A. S.
,
Kimmel
,
A.
,
Dollar
,
A. M.
,
Bekris
,
K. E.
, and
Boularias
,
A.
,
2019
, “
Learning a State Transition Model of an Underactuated Adaptive Hand
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1287
1294
.
46.
Azulay
,
O.
,
Ben-David
,
I.
, and
Sintov
,
A.
,
2023
, “
Learning Haptic-Based Object Pose Estimation for In-Hand Manipulation Control With Underactuated Robotic Hands
,”
IEEE Trans. Hapt.
,
16
(
1
), pp.
73
85
.
47.
Sintov
,
A.
,
Kimmel
,
A.
,
Bekris
,
K.
, and
Boularias
,
A.
,
2020
, “
Motion Planning With Competency-Aware Transition Models for Underactuated Adaptive Hands
,”
IEEE International Conference on Robotics and Automation
,
Paris, France
,
May 31-Aug. 31
, pp.
7761
7767
.
48.
Kimmel*
,
A.
,
Sintov*
,
A.
,
Wen
,
B.
,
Boularias
,
A.
, and
Bekris
,
K.
,
2019
, “
Belief-Space Planning Using Learned Models With Application to Underactuated Hands
,”
International Symposium on Robotics Research
,
Hanoi, Vietnam
,
Oct. 6–10
.
49.
Sintov
,
A.
,
Kimmel
,
A.
,
Wen
,
B.
,
Boularias
,
A.
, and
Bekris
,
K.
,
2020
, “
Tools for Data-Driven Modeling of Within-Hand Manipulation With Underactuated Adaptive Hands
,”
Conference on Learning for Dynamics and Control
,
Online
,
June 2020
, Vol. 120, pp.
771
780
.
You do not currently have access to this content.