Abstract

Researchers have studied Stewart–Gough platforms, also known as Gough–Stewart platforms or hexapod platforms extensively for their inherent fine control characteristics. Their studies led to the potential deployment opportunities of Stewart–Gough platforms in many critical applications such as medical field, engineering machines, space research, electronic chip manufacturing, automobile manufacturing, etc. Some of these applications need micro- and nano-level movement control in 3D space for the motions to be precise, complicated, and repeatable; a Stewart–Gough platform fulfills these challenges smartly. For this, the platform must be more accurate than the specified application accuracy level and thus proper calibration for a parallel robot is crucial. Forward kinematics-based calibration for these hexapod machines becomes unnecessarily complex and inverse kinematics complete this task with much ease. To experiment with different calibration techniques, various calibration approaches were implemented by using external instruments, constraining one or more motions of the system, and using extra sensors for auto or self-calibration. This survey paid attention to those key methodologies, their outcome, and important details related to inverse kinematic-based parallel robot calibrations. It was observed during this study that the researchers focused on improving the accuracy of the platform position and orientation considering the errors contributed by one source or multiple sources. The error sources considered are mainly kinematic and structural, in some cases, environmental factors also are reviewed; however, those calibrations are done under no-load conditions. This study aims to review the present state of the art in this field and highlight the processes and errors considered for the calibration of Stewart–Gough platforms.

References

1.
Harib
,
K. H.
,
Sharif Ullah
,
A. M. M.
, and
Hammami
,
A.
,
2007
, “
A Hexapod-Based Machine Tool With Hybrid Structure: Kinematic Analysis and Trajectory Planning
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1426
1432
.
2.
Shi
,
H.
,
She
,
Y.
, and
Duan
,
X.
,
2015
, “
Modeling and Measurement Algorithm of Hexapod Platform Sensor Using Inverse Kinematics
,”
2015 5th Australian Control Conference (AUCC)
,
Griffith University Gold Coast Campus in Gold Coast, Australia
,
Nov. 5–6
, pp.
331
335
.
3.
Pandilov
,
Z.
, and
Dukovski
,
V.
,
2012
, “
Parallel Kinematics Machine Tools : Overview—From History to the Future
,”
International Journal of Engineering
,
2
(
1
), pp.
111
124
.
4.
Jouini
,
M.
,
Sassi
,
M.
,
Sellami
,
A.
, and
Amara
,
N.
,
2013
, “
Modeling and Control for a 6-DOF Platform Manipulator
,”
2013 International Conference on Electrical Engineering and Software Applications
,
Hammamet, Tunisia
,
Mar. 21–23
.
5.
Gough
,
V. E.
, and
Whitehall
,
S G
,
1962
, “
Universal Tyre Testing Machine
,”
Proceedings Automation Division Institution of Mechanical Engineers
,
IMechE 1, London, UK
.
6.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
7.
Wu
,
J. F.
,
Zhang
,
R.
,
Wang
,
R. H.
, and
Yao
,
Y. X.
,
2014
, “
A Systematic Optimization Approach for the Calibration of Parallel Kinematics Machine Tools by a Laser Tracker
,”
Int. J. Mach. Tools Manuf.
,
86
, pp.
1
11
.
8.
Mazare
,
M.
,
Taghizadeh
,
M.
, and
Rasool Najafi
,
M.
,
2017
, “
Kinematic Analysis and Design of a 3-DOF Translational Parallel Robot
,”
Int. J. Autom. Comput.
,
14
(
4
), pp.
432
441
.
9.
Patel
,
A. J.
, and
Ehmann
,
K. F.
,
2000
, “
Calibration of a Hexapod Machine Tool Using a Redundant Leg
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
489
512
.
10.
Patel
,
Y. D.
, and
George
,
P. M.
,
2012
, “
Parallel Manipulators Applications—A Survey
,”
Mod. Mech. Eng.
,
02
(
03
), pp.
57
64
.
11.
Physik Instrumente (PI) GmbH & Co KG.
,
2018
,
Hexapod Parallel Robots Automate Highly Precise Production Processes
.
12.
Majarena
,
A. C.
,
Santolaria
,
J.
,
Samper
,
D.
, and
Aguilar
,
J. J.
,
2010
, “
An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms
,”
Sensors (Switzerland)
,
10
(
11
), pp.
10256
10297
.
13.
Tsai
,
L.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley and Sons, Inc
,
Hoboken, NJ
.
14.
Lee
,
T.-Y.
, and
Shim
,
J.-K.
,
2001
, “
Forward Kinematics of the General 6-6 Stewart Platform Using Algebraic Elimination
,”
Mech. Mach. Theory
,
26
(
9
), pp.
1073
1085
.
15.
Merlet
,
J. P.
,
2002
, “
Still a Long Way to Go on the Road for Parallel Mechanisms
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exhibition
,
Montreal, Canada
,
Sept. 29–Oct. 2
.
16.
Daney
,
D.
,
Andreff
,
N.
,
Chabert
,
G.
, and
Papegay
,
Y.
,
2006
, “
Interval Method for Calibration of Parallel Robots: Vision-Based Experiments
,”
Mech. Mach. Theory
,
41
(
8
), pp.
929
944
.
17.
Jáuregui
,
J. C.
,
Hernández
,
E. E.
,
Ceccarelli
,
M.
,
López-Cajún
,
C.
, and
García
,
A.
,
2013
, “
Kinematic Calibration of Precise 6-DOF Stewart Platform-Type Positioning Systems for Radio Telescope Applications
,”
Front. Mech. Eng.
,
8
(
3
), pp.
252
260
.
18.
Ziegert
,
J. C.
,
Jokiel
,
B.
, and
Huang
,
C.-C.
,
1999
, “Calibration and Self-Calibration of Hexapod Machine Tools,”
Parallel Kinematic Mach
,
Springer-Verlag Ltd.
,
London
, pp.
205
216
.
19.
Everett
,
L. J.
,
Driels
,
M.
, and
Mooring
,
B. W.
,
1987
, “
Kinematic Modelling for Robot Calibration
,”
Proceedings. 1987 IEEE International Conference on Robotics and Automation
,
Raleigh, NC
,
Mar. 31–Apr. 3
, IEEE, pp.
183
189
.
20.
Elatta
,
A. Y.
,
Gen
,
L. P.
,
Zhi
,
F. L.
,
Daoyuan
,
Y.
, and
Fei
,
L.
,
2004
, “
An Overview of Robot Calibration
,”
Inf. Technol. J.
,
3
(
1
), pp.
74
78
.
21.
Meng
,
Y.
, and
Zhuang
,
H.
,
2007
, “
Autonomous Robot Calibration Using Vision Technology
,”
Rob. Comput. Integr. Manuf.
,
23
(
4
), pp.
436
446
.
22.
Nubiola
,
A.
, and
Bonev
,
I. A.
,
2014
, “
Absolute Robot Calibration With a Single Telescoping Ballbar
,”
Precis. Eng.
,
38
(
3
), pp.
472
480
.
23.
Szep
,
C.
,
Stan
,
S. D.
,
Csibi
,
V.
,
Manic
,
M.
, and
Bǎlan
,
R.
,
2009
, “
Kinematics, Workspace, Design and Accuracy Analysis of RPRPR Medical Parallel Robot
,”
Proceedings of 2009 2nd Conference on Human System Interactions (HSI ’09)
,
Catania, Italy
,
May 21–23
, pp.
75
80
.
24.
Bleicher
,
F.
,
Puschitz
,
F.
, and
Theiner
,
A.
,
2006
, “
Laser Based Measurement System for Calibrating Machine Tools in 6 DOF
,”
Annals of DAAAM and Proceedings of the 17th International DAAAM Symposium
,
Cluj-Napoca, Romania
,
Mar. 24–25
, pp.
39
40
.
25.
Ramesh
,
R.
,
Mannan
,
M.
, and
Poo
,
A.
,
2000
, “
Error Compensation in Machine Tools—A Review. Part I
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
.
26.
Szatmári
,
S.
,
1999
, “
Geometrical Errors of Parallel Robots
,”
Period. Polytech. Mech. Eng.
,
43
(
2
), pp.
155
162
.
27.
Daney
,
D.
,
2002
, “
Optimal Measurement Configurations for Gough Platform Calibration
,”
Proceedings of 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, Vol. 1, pp.
147
152
.
28.
Soons
,
J. A.
,
1997
, “
Error Analysis of a Hexapod Machine Tool
,”
Trans. Eng. Sci.
,
16
, pp.
347
358
.
29.
Traslosheros
,
A.
,
Sebastián
,
J. M.
,
Torrijos
,
J.
,
Carelli
,
R.
, and
Castillo
,
E.
,
2013
, “
An Inexpensive Method for Kinematic Calibration of a Parallel Robot by Using One Hand-Held Camera as Main Sensor
,”
Sensors (Switzerland)
,
13
(
8
), pp.
9941
9965
.
30.
Merlet
,
J. P.
,
2006
,
Parallel Robotics
, 2nd ed.,
Springer
,
Dordrecht, The Netherlands
.
31.
Ryu
,
J.
, and
Rauf
,
A.
,
2001
, “
A New Method for Fully Autonomous Calibration of Parallel Manipulators Using a Constraint Link
,”
2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No. 01TH8556)
,
Como, Italy
,
July 8–12
, Vol. 1, pp.
141
146
.
32.
Traslosheros
,
A.
,
Sebastián
,
J. M.
,
Castillo
,
E.
,
Roberti
,
F.
, and
Carelli
,
R.
,
2011
, “
A Method for Kinematic Calibration of a Parallel Robot by Using One Camera in Hand and a Spherical Object
,”
IEEE 15th International Conference on Advanced Robotics New Boundaries Robot (ICAR 2011)
,
Tallinn, Estonia
,
June 20– 23
, pp.
75
81
.
33.
Mura
,
A.
,
2011
, “
Six D.O.F. Displacement Measuring Device Based on a Modified Stewart Platform
,”
Mechatronics
,
21
(
8
), pp.
1309
1316
.
34.
Guo
,
J.
,
Wang
,
D.
,
Fan
,
R.
,
Chen
,
W.
, and
Zhao
,
G.
,
2016
, “
Development of a Material Testing Machine With Multi-dimensional Loading Capability
,”
J. Adv. Mech. Des. Syst. Manuf.
,
10
(
2
).
35.
Ren
,
X. D.
,
Feng
,
Z. R.
, and
Su
,
C. P.
,
2009
, “
A New Calibration Method for Parallel Kinematics Machine Tools Using Orientation Constraint
,”
Int. J. Mach. Tools Manuf.
,
49
(
9
), pp.
708
721
.
36.
Huang
,
T.
,
Wang
,
J.
,
Chetwynd
,
D. G.
, and
Whitehouse
,
D. J.
,
2003
, “
Identifiability of Geometric Parameters of 6-DOF PKM Systems Using a Minimum Set of Pose Error Data
,”
Proc. IEEE Int. Conf. Robot. Autom.
,
2
(
1
), pp.
1863
1868
.
37.
Zou
,
H.
, and
Notash
,
L.
,
2001
, “
Discussions on the Camera-Aided Calibration of Parallel Manipulators
,”
Proceedings of 2001 CCToMM Symposium on Mechanisms, Machines, and Mechatronics
,
Saint-Hubert, Canada
,
May 31–June 1
, pp.
3
4
.
38.
Olarra
,
A.
,
Axinte
,
D.
, and
Kortaberria
,
G.
,
2018
, “
Geometrical Calibration and Uncertainty Estimation Methodology for a Novel Self-Propelled Miniature Robotic Machine Tool
,”
Robot. Comput. Integr. Manuf.
,
49
(
Jan.
), pp.
204
214
.
39.
Zhuang
,
H.
,
Yan
,
J.
, and
Masory
,
O.
,
1998
, “
Calibration of Stewart Platforms and Other Parallel Manipulators by Minimizing Inverse Kinematic Residuals
,”
J. Robot. Syst.
,
15
(
7
), pp.
395
405
.
40.
Santolaria
,
J.
, and
Ginés
,
M.
,
2013
, “
Uncertainty Estimation in Robot Kinematic Calibration
,”
Robot. Comput. Integr. Manuf.
,
29
(
2
), pp.
370
384
.
41.
Vischer
,
P.
, and
Clavel
,
R.
,
1998
, “
Kinematic Calibration of the Parallel Delta Robot
,”
Robotica
,
16
(
2
), pp.
207
218
.
42.
Jing
,
X.
,
Fang
,
Y.
, and
Wang
,
Z.
,
2020
, “
A Calibration Method for 6-UPS Stewart Platform
,”
Proceedings of 2019 Chinese Intelligent systems Conference
,
Fuzhou, China
,
Oct. 16–17
, Vol. 593,pp. 513–519.
43.
Agheli
,
M.
, and
Nategh
,
M.
,
2009
, “
Identifying the Kinematic Parameters of Hexapod Machine Tool
,”
World Academy of Science, Engineering and Technology, Int. J. Mech. Aeros. Ind., Mech. Manuf. Eng.
,
3
, pp.
392
397
.
44.
Daney
,
D.
,
Papegay
,
Y.
, and
Neumaier
,
A.
,
2004
, “
Interval Methods for Certification of the Kinematic Calibration of Parallel Robots
,”
Proc. IEEE Int. Conf. Robot. Autom.
,
2004
(
2
), pp.
1913
1918
.
45.
Daney
,
D.
, and
Emiris
,
I. Z.
,
2004
, “
Algebraic Elimination for Parallel Robot Calibration
,”
Proceedings of 11 World Congress of International Federation for the Theory of Machines and Mechanisms (IFToMM)
,
Tianjin, China
,
April
.
46.
Wang
,
S. M.
, and
Ehmann
,
K. F.
,
2002
, “
Error Model and Accuracy Analysis of a Six-DOF Stewart Platform
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
286
295
.
47.
Daney
,
D.
, and
Emiris
,
I.
,
2001
, “
Variable Elimination for Reliable Parallel Robot Calibration
,”
2nd Workshop on Computational Kinematics (CK2001)
,
Seoul, South Korea
,
May 20–22
, p.
13
.
48.
Song
,
Y.
,
Tian
,
W.
,
Tian
,
Y.
, and
Liu
,
X.
,
2022
, “
Calibration of a Stewart Platform by Designing a Robust Joint Compensator With Artificial Neural Networks
,”
Precis. Eng.
,
77
(
June
), pp.
375
384
.
49.
Mahmoodi
,
A.
,
Sayadi
,
A.
, and
Menhaj
,
M. B.
,
2014
, “
Solution of Forward Kinematics in Stewart Platform Using Six Rotary Sensors on Joints of Three Legs
,”
Adv. Rob.
,
28
(
1
), pp.
27
37
.
50.
Nategh
,
M. J.
, and
Agheli
,
M. M.
,
2009
, “
A Total Solution to Kinematic Calibration of Hexapod Machine Tools With a Minimum Number of Measurement Configurations and Superior Accuracies
,”
Int. J. Mach. Tools Manuf.
,
49
(
15
), pp.
1155
1164
.
51.
Großmann
,
K.
,
Kauschinger
,
B.
, and
Szatmári
,
S.
,
2008
, “
Kinematic Calibration of a Hexapod of Simple Design
,”
Prod. Eng.
,
2
(
3
), pp.
317
325
.
52.
Liu
,
Y.
,
Liang
,
B.
,
Li
,
C.
,
Xue
,
L.
,
Hu
,
S.
, and
Jiang
,
Y.
,
2007
, “
Calibration of a Steward Parallel Robot Using Genetic Algorithm
,”
Proceedings of 2007 International Conference on Mechatronics and Automation (ICMA 2007)
,
Harbin, Heilongjiang, China
,
Aug. 5–9
, pp.
2495
2500
.
53.
Ting
,
Y.
,
Jar
,
H. C.
, and
Li
,
C. C.
,
2007
, “
Measurement and Calibration for Stewart Micromanipulation System
,”
Precis. Eng.
,
31
(
3
), pp.
226
233
.
54.
Dallej
,
T.
,
Hadj-Abdelkader
,
H.
,
Andreff
,
N.
, and
Martinet
,
P.
,
2006
, “
Kinematic Calibration of a Gough-Stewart Platform Using an Omnidirectional Camera
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Beijing, China
,
Oct. 9–15
, pp.
4666
4671
.
55.
Daney
,
D.
,
Papegay
,
Y.
, and
Madeline
,
B.
,
2005
, “
Choosing Measurement Poses for Robot Calibration With the Local Convergence Method and Tabu Search
,”
Int. J. Rob. Res.
,
24
(
6
), pp.
501
518
.
56.
Gao
,
M.
,
Li
,
T.
, and
Yin
,
W.
,
2003
, “
Calibration Method and Experiment of Stewart Platform Using a Laser Tracker
,”
Proc. IEEE Int. Conf. Syst. Man Cybern.
,
3
, pp.
2797
2802
.
57.
Renaud
,
P.
,
Andreff
,
N.
,
Dhome
,
M.
, and
Martinet
,
P.
,
2002
, “
Experimental Evaluation of a Vision-Based Measuring Device for Parallel Machine-Tool Calibration
,”
IEEE Int. Conf. Intell. Robot. Syst.
,
2
, pp.
1868
1873
.
58.
Week
,
M.
, and
Staimer
,
D.
,
2002
, “
Accuracy Issues of Parallel Kinematic Machine Tools
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
216
(
1
), pp.
51
57
.
59.
Ihara
,
Y.
,
Ishida
,
T.
,
Kakino
,
Y.
,
Li
,
Z.
,
Matsushita
,
T.
, and
Nakagawa
,
M.
,
2000
, “
Kinematic Calibration of a Hexapod Machine Tool by Using Circular Test
,”
Proceedings of 2000 Japan US Symposium on Flexible Automation Conference
,
Ann Arbor, MI
,
July 23–26
, pp.
1
4
.
60.
Rauf
,
A.
, and
Ryu
,
J.
,
2001
, “
Fully Autonomous Calibration of Parallel Manipulators by Imposing Position Constraint
,”
Proc. IEEE Int. Conf. Robot. Autom.
,
3
, pp.
2389
2394
.
61.
Chiu
,
Y. J.
, and
Perng
,
M. H.
,
2003
, “
Self-Calibration of a General Hexapod Manipulator Using Cylinder Constraints
,”
Int. J. Mach. Tools Manuf.
,
43
(
10
), pp.
1051
1066
.
62.
Zhuang
,
H.
,
Liu
,
L.
, and
Masory
,
O.
,
2000
, “
Autonomous Calibration of Hexapod Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
140
148
.
You do not currently have access to this content.