Abstract

A wire beam is a single-translation constraint along its axial direction. It offers many applications in compliant mechanisms, such as being a transmitting/decoupling element connected to a linear actuator and being a fundamental constitutive element to design complex compliant joints and mechanisms. It is desired to find an alternative leaf beam single-translation constraint to equal a wire beam in order to improve the manufacturability and robustness to external loading. In this paper, we propose and model a new single-translation constraint compliant module, I-shape leaf beam design, to compare with a corresponding L-shape leaf beam design reported in the literature. Two spherical (S) joints using three I-shape leaf beams and three L-shape leaf beams, respectively, are then analytically modeled and analyzed. Three key geometric parameters are adopted to thoroughly assess four performance indices of each S joint, including stiffness ratio, rotation radius error, coupling motion, and parasitic motion. It shows that the I-shape leaf beam–based S joint performance indices are generally 10 times better than those of the L-shape leaf beam–based S joint. For each S joint, the optimal parameters are found under the given conditions. Finally, experimental tests are carried out for a fabricated S joint prototype using the I-shape leaf beams, the results from which verify the accuracy of the proposed analytical model and the fabrication feasibility.

References

1.
Hale
,
L. C.
,
1999
, “
Principles and Techniques for Designing Precision Machines (No. UCRL-LR-133066; YN0100000)
,”
Ph.D. thesis
,
Lawrence Livermore National Lab (LLNL)
,
Livermore, CA
.
2.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
.
3.
Schellekens
,
P.
,
Rosielle
,
N.
,
Vermeulen
,
H.
,
Vermeulen
,
M.
,
Wetzels
,
S.
, and
Pril
,
W.
,
1998
, “
Design for Precision: Current Status and Trends
,”
CIRP Annals.
,
47
(
2
), pp.
557
586
.
4.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)–Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
5.
Hao
,
G.
,
2013
, “
Towards the Design of Monolithic Decoupled XYZ Compliant Parallel Mechanisms for Multi-Function Applications
,”
Mech. Sci.
,
4
(
2
), pp.
291
302
.
6.
Hao
,
G.
, and
Kong
,
X.
,
2016
, “
A Structure Design Method for Compliant Parallel Manipulators With Actuation Isolation
,”
Mech. Sci.
,
7
(
2
), pp.
247
253
.
7.
Li
,
H.
,
Hao
,
G.
,
Liu
,
Y.
,
Li
,
S.
,
Li
,
X.
, and
Deng
,
X.
,
2021
, “
Synthesis and Modelling of One Rotational Constraint Orientated Compliant Mechanisms
,”
Mech. Mach. Theory
,
156
, p.
104129
.
8.
Hao
,
G.
, and
Kong
,
X.
,
2013
, “
A Normalization-Based Approach to the Mobility Analysis of Spatial Compliant Multi-Beam Modules
,”
Mech. Mach. Theory
,
59
, pp.
1
19
.
9.
Hao
,
G.
,
2017
, “
Determinate Synthesis of Symmetrical, Monolithic Tip–Tilt–Piston Flexure Stages
,”
ASME J. Mech. Des.
,
139
(
4
), p.
042303
.
10.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
(
5
), pp.
680
706
.
11.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
12.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam Constraint Model
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041011
.
13.
Naves
,
M.
,
Aarts
,
R.
, and
Brouwer
,
D.
,
2019
, “
Large Stroke High Off-Axis Stiffness Three Degree of Freedom Spherical Flexure Joint
,”
Precis Eng.
,
56
, pp.
422
431
.
14.
Yang
,
Z.
,
Lee
,
R.
, and
Hopkins
,
J. B.
,
2022
, “
Hexblade Positioner: A Fast Large-Range Six-Axis Motion Stage
,”
Precis. Eng.
,
76
, pp.
199
207
.
15.
Rommers
,
J.
,
van der Wijk
,
V.
, and
Herder
,
J. L.
,
2021
, “
A New Type of Spherical Flexure Joint Based on Tetrahedron Elements
,”
Precis. Eng.
,
71
, pp.
130
140
.
16.
Rommers
,
J.
,
Naves
,
M.
,
Brouwer
,
D. M.
, and
Herder
,
J. L.
,
2022
, “
A Flexure-Based Linear Guide With Torsion Reinforcement Structures
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031013
.
17.
Li
,
H.
,
Hao
,
G.
, and
Kavanagh
,
R. C.
,
2016
, “
Position-Space-Based Compliant Mechanism Reconfiguration Approach and Its Application in the Reduction of Parasitic Motion
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092301
.
18.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2006
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.
19.
Satheeshbabu
,
S.
, and
Krishnan
,
G.
,
2016
, “
Qualitative Mobility Analysis of Wire Flexure Systems Using Load Flow Visualization
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061012
.
20.
Zhang
,
Y.
,
Su
,
H. J.
, and
Liao
,
Q.
,
2014
, “
Mobility Criteria of Compliant Mechanisms Based on Decomposition of Compliance Matrices
,”
Mech. Mach. Theory
,
79
, pp.
80
93
.
21.
Li
,
H.
, and
Hao
,
G.
,
2015
, “
A Constraint and Position Identification (CPI) Approach for the Synthesis of Decoupled Spatial Translational Compliant Parallel Manipulators
,”
Mech. Mach. Theory
,
90
, pp.
59
83
.
22.
Hao
,
G.
,
Li
,
H.
,
Chang
,
Y. H.
, and
Liu
,
C. S.
,
2021
, “
Design of Four-DoF Compliant Parallel Manipulators Considering Maximum Kinematic Decoupling for Fast Steering Mirrors
,”
Actuators
,
10
(
11
), p.
292
.
23.
Archer
,
N. C.
, and
Hopkins
,
J. B.
,
2023
, “
Large-Range Rotation-to-Translation Compliant Transmission Mechanism
,”
ASME J. Mech. Des.
,
145
(
12
), p.
125001
.
24.
Hao
,
G.
,
2016
, “Mobility and Structure Re-Configurability of Compliant Mechanisms,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer International Publishing
, pp.
49
60
.
25.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT). Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
You do not currently have access to this content.