Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

As agile processes are increasingly adopted for product design, and as consumer preferences are rapidly evolving with increasing information available from digital media, there is a need for a demand model that can accommodate the dynamics of product development. However, existing models of demand estimation, such as the discrete-choice models, do not capture the dynamics of product development and decision-making processes and thus are unable to effectively capture the effect of product updates and the release of information. To address this gap, we present a dynamic demand model and demonstrate how it can be used to determine the optimal time to release product updates. The demand model is based on decision field theory (DFT), which enables the modeling of the dynamic behavior of human decision makers. The contributions of this article are as follows. First, we formulate a computational model for demand modeling built on DFT and demonstrate the viability of using the model to determine product release strategies. Second, we provide analytical approximations of the demand model and compare the accuracy of the approximated demand against the demand predicted by the dynamics model. Third, we show an example of a game played by competitors trying to optimize demand for their products by choosing the optimal update time relative to each other. Finally, we demonstrate the feasibility of parameter estimation using only the demand data.

References

1.
“The Journey to Software-Defined Vehicles,” https://www.sonatus.com/resources/the-journey-to-software-defined-vehicles/, Accessed December 1, 2022.
2.
Becker
,
J.
,
2022
, “
Operating System for Software-Defined Vehicles
,”
ATZelectronics Worldwide
,
17
(
5
), pp.
40
45
.
3.
“Tesla Software Updates and Release Notes,” https://tesla-info.com/release/Latest, Accessed December 5, 2022.
4.
Beck
,
K.
,
Beedle
,
M.
,
van Bennekum
,
A.
,
Cockburn
,
A.
,
Cunningham
,
W.
,
Fowler
,
M.
,
Grenning
,
J.
,
Highsmith
,
J.
,
Hunt
,
A.
,
Jeffries
,
R.
,
Kern
,
J.
,
Marick
,
B.
,
Martin
,
R. C.
,
Mellor
,
S.
,
Schwaber
,
K.
,
Sutherland
,
J.
, and
Thomas
,
D.
,
2001
, “Manifesto for Agile Software Development,” https://agilemanifesto.org/, Accessed November 17, 2022.
5.
Abrahamsson
,
P.
,
Salo
,
O.
,
Ronkainen
,
J.
, and
Warsta
,
J.
,
2017
, “Agile Software Development Methods: Review and Analysis,” https://arxiv.org/abs/1709.08439, Accessed November 17, 2022.
6.
Pessôa
,
M. V. P.
, and
Trabasso
,
L. G.
,
2017
, “The Product Development System,”
The Lean Product Design and Development Journey
,
Springer
, pp.
3
18
.
7.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
,
2004
, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
J. Mech. Des.
,
127
(
4
), pp.
514
523
.
8.
Busemeyer
,
J. R.
, and
Townsend
,
J. T.
,
1992
, “
Fundamental Derivations From Decision Field Theory
,”
Math. Soc. Sci.
,
23
(
3
), pp.
255
282
.
9.
Carbon
,
C.-C.
,
2019
, “
Psychology of Design
,”
Des. Sci.
,
5
, p.
e26
.
10.
Tversky
,
A.
, and
Kahneman
,
D.
,
1974
, “
Judgment Under Uncertainty: Heuristics and Biases
,”
Science
,
185
(
4157
), pp.
1124
1131
.
11.
Tversky
,
A.
, and
Kahneman
,
D.
,
1992
, “
Advances in Prospect Theory: Cumulative Representation of Uncertainty
,”
J. Risk Uncertainty
,
5
(
4
), pp.
297
323
.
12.
Cirillo
,
C.
, and
Xu
,
R.
,
2011
, “
Dynamic Discrete Choice Models for Transportation
,”
Transport Rev.
,
31
(
4
), pp.
473
494
.
13.
Arcidiacono
,
P.
, and
Ellickson
,
P. B.
,
2011
, “
Practical Methods for Estimation of Dynamic Discrete Choice Models
,”
Annual Rev. Econ.
,
3
(
1
), pp.
363
394
.
14.
Arcidiacono
,
P.
, and
Miller
,
R. A.
,
2020
, “
Identifying Dynamic Discrete Choice Models Off Short Panels
,”
J. Econom.
,
215
(
2
), pp.
473
485
.
15.
Busemeyer
,
J. R.
, and
Diederich
,
A.
,
2002
, “
Survey of Decision Field Theory
,”
Math. Soc. Sci.
,
43
(
3
), pp.
345
370
.
16.
Busemeyer
,
J. R.
, and
Townsend
,
J. T.
,
1993
, “
Decision Field Theory: A Dynamic-Cognitive Approach to Decision Making in an Uncertain Environment
,”
Psychol. Rev.
,
100
(
3
), p.
432
.
17.
Roe
,
R. M.
,
Busemeyer
,
J. R.
, and
Townsend
,
J. T.
,
2001
, “
Multialternative Decision Field Theory: A Dynamic Connectionst Model of Decision Making
,”
Psychol. Rev.
,
108
(
2
), p.
370
.
18.
Haaijer
,
R.
,
Kamakura
,
W.
, and
Wedel
,
M.
,
2000
, “
Response Latencies in the Analysis of Conjoint Choice Experiments
,”
J. Marketing Res.
,
37
(
3
), pp.
376
382
.
19.
Corr
,
P. J.
,
2013
, “
Approach and Avoidance Behaviour: Multiple Systems and Their Interactions
,”
Emotion Rev.
,
5
(
3
), pp.
285
290
.
20.
Slovic
,
P.
, and
Lichtenstein
,
S.
,
1983
, “
Preference Reversals: A Broader Perspective
,”
Am. Econ. Rev.
,
73
(
4
), pp.
596
605
.
21.
Burton
,
S.
, and
Zinkhan
,
G. M.
,
1987
, “
Changes in Consumer Choice: Further Investigation of Similarity and Attraction Effects
,”
Psychol. Marketing
,
4
(
3
), pp.
255
266
.
22.
Huber
,
J.
,
Payne
,
J. W.
, and
Puto
,
C.
,
1982
, “
Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis
,”
J. Consumer Res.
,
9
(
1
), pp.
90
98
.
23.
Huber
,
J.
,
Payne
,
J. W.
, and
Puto
,
C. P.
,
2014
, “
Let’s Be Honest About the Attraction Effect
,”
J. Marketing Res.
,
51
(
4
), pp.
520
525
.
24.
Simonson
,
I.
,
1989
, “
Choice Based on Reasons: The Case of Attraction and Compromise Effects
,”
J. Consumer Res.
,
16
(
2
), pp.
158
174
.
25.
Chernev
,
A.
,
2004
, “
Extremeness Aversion and Attribute-Balance Effects in Choice
,”
J. Consumer Res.
,
31
(
2
), pp.
249
263
.
26.
Qin
,
H.
,
Guan
,
H.
, and
Wu
,
Y.-J.
,
2013
, “
Analysis of Park-and-Ride Decision Behavior Based on Decision Field Theory
,”
Transp. Res. F Traffic Psychol. Behav.
,
18
, pp.
199
212
.
27.
Hancock
,
T. O.
,
Hess
,
S.
,
Marley
,
A.
, and
Choudhury
,
C. F.
,
2021
, “
An Accumulation of Preference: Two Alternative Dynamic Models for Understanding Transport Choices
,”
Transp. Res. B Methodologic.
,
149
, pp.
250
282
.
28.
Lee
,
S.
,
Son
,
Y.-J.
, and
Jin
,
J.
,
2008
, “
Decision Field Theory Extensions for Behavior Modeling in Dynamic Environment Using Bayesian Belief Network
,”
Inf. Sci.
,
178
(
10
), pp.
2297
2314
.
29.
Hotaling
,
J. M.
,
Busemeyer
,
J. R.
, and
Li
,
J.
,
2010
, “
Theoretical Developments in Decision Field Theory: Comment on Tsetsos, Usher, and Chater (2010)
,”
Psychol. Rev.
,
117
(4), pp.
1294
1298
.
30.
Hancock
,
T. O.
,
Hess
,
S.
, and
Choudhury
,
C. F.
,
2018
, “
Decision Field Theory: Improvements to Current Methodology and Comparisons With Standard Choice Modelling Techniques
,”
Transp. Res. B Methodologic.
,
107
, pp.
18
40
.
31.
Hotaling
,
J. M.
,
2020
, “
Decision Field Theory-Planning: A Cognitive Model of Planning on the Fly in Multistage Decision Making
,”
Decision
,
7
(1), pp.
20
42
.
32.
Walley
,
R. E.
, and
Weiden
,
T. D.
,
1973
, “
Lateral Inhibition and Cognitive Masking: A Neuropsychological Theory of Attention
,”
Psychol. Rev.
,
80
(4), pp.
284
302
.
33.
Bhattacharya
,
R. N.
, and
Waymire
,
E. C.
,
1990
,
Stochastic Processes With Applications
,
SIAM
, Philadelphia, PA
34.
He
,
L.
,
Chen
,
W.
,
Hoyle
,
C.
, and
Yannou
,
B.
,
2012
, “
Choice Modeling for Usage Context-Based Design
,”
ASME J. Mech. Des.
,
134
(
3
), p. 031007.
35.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. D Trans. Environ.
,
32
, pp.
421
434
.
36.
Wang
,
M.
,
Chen
,
W.
,
Huang
,
Y.
,
Contractor
,
N. S.
, and
Fu
,
Y.
,
2016
, “
Modeling Customer Preferences Using Multidimensional Network Analysis in Engineering Design
,”
Des. Sci.
,
2
, p.
e11
.
You do not currently have access to this content.