Abstract

A computational approach is presented for optimizing new riblet surface designs in turbulent channel flow for drag reduction, utilizing design-by-morphing (DbM), large Eddy simulation (LES), and Bayesian optimization (BO). The design space is generated using DbM to include a variety of novel riblet surface designs, which are then evaluated using LES to determine their drag-reducing capabilities. The riblet surface geometry and configuration are optimized for maximum drag reduction using the mixed-variable Bayesian optimization (MixMOBO) algorithm. A total of 125 optimization epochs are carried out, resulting in the identification of three optimal riblet surface designs that are comparable to or better than the reference drag reduction rate of 8%. The Bayesian-optimized designs commonly suggest riblet sizes of around 15 wall units, relatively large spacing compared to conventional designs, and spiky tips with notches for the riblets. Our overall optimization process is conducted within a reasonable physical time frame with up to 12-core parallel computing and can be practical for fluid engineering optimization problems that require high-fidelity computational design before materialization.

References

1.
Yu
,
C.
,
Liu
,
M.
,
Zhang
,
C.
,
Yan
,
H.
,
Zhang
,
M.
,
Wu
,
Q.
,
Liu
,
M.
, and
Jiang
,
L.
,
2020
, “
Bio-inspired Drag Reduction: From Nature Organisms to Artificial Functional Surfaces
,”
Giant
,
2
, p.
100017
.
2.
Liu
,
G.
,
Yuan
,
Z.
,
Qiu
,
Z.
,
Feng
,
S.
,
Xie
,
Y.
,
Leng
,
D.
, and
Tian
,
X.
,
2020
, “
A Brief Review of Bio-Inspired Surface Technology and Application Toward Underwater Drag Reduction
,”
Ocean. Eng.
,
199
, p.
106962
.
3.
Ball
,
P.
,
1999
, “
Engineering Shark Skin and Other Solutions
,”
Nature
,
400
(
6744
), pp.
507
509
.
4.
Bhasin
,
D.
,
McAdams
,
D. A.
, and
Layton
,
A.
,
2021
, “
A Product Architecture-Based Tool for Bioinspired Function-Sharing
,”
J. Mech. Des.
,
143
(
8
), p.
081401
.
5.
Ott
,
J.
,
Lazalde
,
M.
, and
Gu
,
G. X.
,
2020
, “
Algorithmic-Driven Design of Shark Denticle Bioinspired Structures for Superior Aerodynamic Properties
,”
Bioinspiration Biomimetics
,
15
(
2
), p.
026001
.
6.
Parfitt
,
A. R.
, and
Vincent
,
J. F. V.
,
2005
, “
Drag Reduction in a Swimming Humboldt Penguin, Spheniscus Humboldti, When the Boundary Layer is Turbulent
,”
J. Bionic Eng.
,
2
(
2
), pp.
57
62
.
7.
Bannasch
,
R.
,
1995
,
Hydrodynamics of Penguins—An Experimental Approach
,
Surrey Beatty & Sons
,
Chipping Norton, NSW
.
8.
Choi
,
K.-S.
,
1989
, “
Near-Wall Structure of a Turbulent Boundary Layer With Riblets
,”
J. Fluid. Mech.
,
208
, pp.
417
458
.
9.
Bixler
,
G. D.
, and
Bhushan
,
B.
,
2013
, “
Fluid Drag Reduction With Shark-Skin Riblet Inspired Microstructured Surfaces
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4507
4528
.
10.
Han
,
M.
,
Lim
,
H.
,
Jang
,
Y.-G.
,
Lee
,
S.
, and
Lee
,
S.-J.
,
2003
, “
Fabrication of a Micro-Riblet Film and Drag Reduction Effects on Curved Objects
,” 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Vol.
1
,
IEEE
,
Boston, MA
, pp.
396
399
.
11.
Sundaram
,
S.
,
Viswanath
,
P. R.
, and
Rudrakumar
,
S.
,
1996
, “
Viscous Drag Reduction Using Riblets on NACA 0012 Airfoil to Moderate Incidence
,”
AIAA. J.
,
34
(
4
), pp.
676
682
.
12.
Dai
,
W.
,
Alkahtani
,
M.
,
Hemmer
,
P. R.
, and
Liang
,
H.
,
2019
, “
Drag-reduction of 3D Printed Shark-Skin-Like Surfaces
,”
Friction
,
7
(
6
), pp.
603
612
.
13.
Wen
,
L.
,
Weaver
,
J. C.
, and
Lauder
,
G. V.
,
2014
, “
Biomimetic Shark Skin: Design, Fabrication and Hydrodynamic Function
,”
J. Experimental Biol.
,
217
(
10
), pp.
1656
1666
.
14.
Li
,
Y.
,
Mao
,
H.
,
Hu
,
P.
,
Hermes
,
M.
,
Lim
,
H.
,
Yoon
,
J.
,
Luhar
,
M.
,
Chen
,
Y.
, and
Wu
,
W.
,
2019
, “
Bioinspired Functional Surfaces Enabled by Multiscale Stereolithography
,”
Adv. Mater. Technol.
,
4
(
5
), p.
1800638
.
15.
Sheikh
,
H. M.
, and
Marcus
,
P. S.
,
2022
, “
Bayesian Optimization for Mixed-Variable, Multi-objective Problems
,”
Structural Multidisciplinary Optim.
,
65
(
11
), p.
331
.
16.
Oh
,
S.
,
Jiang
,
C.-H.
,
Jiang
,
C.
, and
Marcus
,
P. S.
,
2018
, “
Finding the Optimal Shape of the Leading-and-Trailing Car of a High-Speed Train Using Design-by-Morphing
,”
Comput. Mech.
,
62
(
1
), pp.
23
45
.
17.
Sheikh
,
H. M.
,
Lee
,
S.
,
Wang
,
J.
, and
Marcus
,
P. S.
,
2023
, “
Airfoil Optimization Using Design-by-Morphing
,”
J. Comput. Design Eng.
,
10
(
4
), pp.
1443
1459
.
18.
Sheikh
,
H. M.
,
Callan
,
T. A.
,
Hennessy
,
K. J.
, and
Marcus
,
P. S.
,
2022
, “
Optimization of the Shape of a Hydrokinetic Turbine’s Draft Tube and Hub Assembly Using Design-by-Morphing With Bayesian Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
401
, p.
115654
.
19.
Vangelatos
,
Z.
,
Sheikh
,
H. M.
,
Marcus
,
P. S.
,
Grigoropoulos
,
C. P.
,
Lopez
,
V. Z.
,
Flamourakis
,
G.
, and
Farsari
,
M.
,
2021
, “
Strength Through Defects: A Novel Bayesian Approach for the Optimization of Architected Materials
,”
Sci. Adv.
,
7
(
41
), p.
eabk2218
.
20.
Sheikh
,
H. M.
,
Meier
,
T.
,
Blankenship
,
B.
,
Vangelatos
,
Z.
,
Zhao
,
N.
,
Marcus
,
P. S.
, and
Grigoropoulos
,
C. P.
,
2022
, “
Systematic Design of Cauchy Symmetric Structures Through Bayesian Optimization
,”
Int. J. Mech. Sci.
,
236
, p.
107741
.
21.
Walsh
,
M.
,
1982
, “
Turbulent Boundary Layer Drag Reduction Using Riblets
,”
20th Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 11–14
.
22.
Walsh
,
M.
,
1985
, “Riblets for Aircraft Skin-Friction Reduction,”
Langley Symposium on Aerodynamics
,
S.H.
Stack
, ed.,
NASA Langley Research Center
,
Hampton, VA
, pp.
557
572
. https://ntrs.nasa.gov/citations/19880005544
23.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
,
Van der Hoeven
,
J. G. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid. Mech.
,
338
, pp.
59
87
.
24.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
, and
Meyer
,
R.
,
2000
, “
Fluid Mechanics of Biological Surfaces and Their Technological Application
,”
Naturwissenschaften
,
87
(
4
), pp.
157
171
.
25.
Bai
,
X.
,
Zhang
,
X.
, and
Yuan
,
C.
,
2016
, “
Numerical Analysis of Drag Reduction Performance of Different Shaped Riblet Surfaces
,”
Marine Technol. Soc. J.
,
50
(
1
), pp.
62
72
.
26.
Heidarian
,
A.
,
Ghassemi
,
H.
, and
Liu
,
P.
,
2018
, “
Numerical Analysis of the Effects of Riblets on Drag Reduction of a Flat Plate
,”
J. Appl. Fluid Mech.
,
11
(
3
), pp.
679
688
.
27.
Ao
,
M.
,
Wang
,
M.
, and
Zhu
,
F.
,
2021
, “
Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface
,”
Micromachines
,
12
(
1
), p.
59
.
28.
Klocke
,
F.
,
Feldhaus
,
B.
, and
Mader
,
S.
,
2007
, “
Development of an Incremental Rolling Process for the Production of Defined Riblet Surface Structures
,”
Production Eng.
,
1
(
3
), pp.
233
237
.
29.
Gao
,
X.
,
Zhu
,
G.
,
Wang
,
H.
,
Guo
,
N.
, and
Wang
,
Z.
,
2021
, “
Research on Micro Riblets Rolling Process Based on Uncertainty Analysis
,”
Mater. Today Commun.
,
27
, p.
102302
.
30.
Blumenson
,
L. E.
,
1960
, “
A Derivation of N-Dimensional Spherical Coordinates
,”
Amer. Math. Monthly
,
67
(
1
), pp.
63
66
.
31.
GEOS contributors
,
2021
, “
GEOS Coordinate Transformation Software Library
,
Open Source Geospatial Foundation
, https://libgeos.org/, Accessed December 11, 2023.
32.
Walsh
,
M.
, and
Lindemann
,
A.
,
1984
, “
Optimization and Application of Riblets for Turbulent Drag Reduction
,”
22nd Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 9–12
.
33.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1993
, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid. Mech.
,
255
, pp.
503
539
.
34.
García-Mayoral
,
R.
, and
Jiménez
,
J.
,
2011
, “
Drag Reduction by Riblets
,”
Philos. Trans. Royal Soc. Math. Phys. Eng. Sci.
,
369
(
1940
), pp.
1412
1427
.
35.
Martin
,
S.
, and
Bhushan
,
B.
,
2016
, “
Fluid Flow Analysis of Continuous and Segmented Riblet Structures
,”
RSC. Adv.
,
6
(
13
), pp.
10962
10978
.
36.
Lee
,
S.
, and
Hwang
,
W.
,
2019
, “
Development of an Efficient Immersed-Boundary Method With Subgrid-Scale Models for Conjugate Heat Transfer Analysis Using Large Eddy Simulation
,”
Int. J. Heat. Mass. Transfer.
,
134
, pp.
198
208
.
37.
Baek
,
S.
,
Lee
,
S.
,
Hwang
,
W.
, and
Park
,
J. S.
,
2019
, “
Experimental and Numerical Investigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage
,”
ASME J. Turbomach.
,
141
(
1
), p.
011012
.
38.
Abdulbari
,
H. A.
,
Mahammed
,
H. D.
, and
Hassan
,
Z. B. Y.
,
2015
, “
Bio-Inspired Passive Drag Reduction Techniques: A Review
,”
ChemBioEng Rev.
,
2
(
3
), pp.
185
203
.
39.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited
,”
Phys. Fluids.
,
24
(
1
), p.
011702
.
40.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
,
2001
, “
An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
,
171
(
1
), pp.
132
150
.
41.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid. Mech.
,
177
(
13800
), pp.
133
166
.
42.
Tsukahara
,
T.
,
Seki
,
Y.
,
Kawamura
,
H.
, and
Tochio
,
D.
,
2005
, “
DNS of Turbulent Channel Flow at Very Low Reynolds Numbers
,”
Fourth International Symposium on Turbulence and Shear Flow Phenomena
,
Williamsburg, VA
,
June 27–29
, pp.
935
940
.
43.
Vreman
,
A. W.
, and
Kuerten
,
J. G.
,
2014
, “
Comparison of Direct Numerical Simulation Databases of Turbulent Channel Flow at Reτ=180
,”
Phys. Fluids.
,
26
(
1
), p.
015102
.
44.
Park
,
N.
,
Lee
,
S.
,
Lee
,
J.
, and
Choi
,
H.
,
2006
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model With a Global Model Coefficient
,”
Phys. Fluids.
,
18
(
12
), p.
125109
.
45.
Vreman
,
A. W.
,
2004
, “
An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications
,”
Phys. Fluids.
,
16
(
10
), pp.
3670
3681
.
46.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Monthly Weather Rev.
,
91
(
3
), pp.
99
164
.
47.
Iliescu
,
T.
, and
Fischer
,
P. F.
,
2003
, “
Large Eddy Simulation of Turbulent Channel Flows by the Rational Large Eddy Simulation Model
,”
Phys. Fluids.
,
15
(
10
), pp.
3036
3047
.
48.
Lee
,
J.
,
Kim
,
J.
,
Choi
,
H.
, and
Yang
,
K. S.
,
2011
, “
Sources of Spurious Force Oscillations From an Immersed Boundary Method for Moving-Body Problems
,”
J. Comput. Phys.
,
230
(
7
), pp.
2677
2695
.
49.
De Villiers
,
E.
,
2006
, “
The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows
,” Ph d. thesis,
Imperial College London
,
UK
.
50.
Brochu
,
E.
,
Cora
,
V. M.
, and
de Freitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, With Application to Active User Modeling and Hierarchical Reinforcement Learning
,” arXiv:1012.2599.
51.
Frazier
,
P. I.
, and
Wang
,
J.
,
2016
, “Bayesian Optimization for Materials Design,”
Information Science for Materials Discovery and Design
, Vol.
225
,
Lookman
,
T.
,
Alexander
,
F. J.
, and
Rajan
,
K.
, eds.,
Springer
,
Cham
, pp.
45
75
.
52.
Chen
,
D.
,
Skouras
,
M.
,
Zhu
,
B.
, and
Matusik
,
W.
,
2018
, “
Computational Discovery of Extremal Microstructure Families
,”
Sci. Adv.
,
4
(
1
), p.
eaao7005
.
53.
Chen
,
W.
,
Watts
,
S.
,
Jackson
,
J. A.
,
Smith
,
W. L.
,
Tortorelli
,
D. A.
, and
Spadaccini
,
C. M.
,
2019
, “
Stiff Isotropic Lattices Beyond the Maxwell Criterion
,”
Sci. Adv.
,
5
(
9
), p.
eaaw1937
.
54.
Shaw
,
L. A.
,
Sun
,
F.
,
Portela
,
C. M.
,
Barranco
,
R. I.
,
Greer
,
J. R.
, and
Hopkins
,
J. B.
,
2019
, “
Computationally Efficient Design of Directionally Compliant Metamaterials
,”
Nat. Commun.
,
10
(
1
), p.
291
.
55.
Song
,
J.
,
Wang
,
Y.
,
Zhou
,
W.
,
Fan
,
R.
,
Yu
,
B.
,
Lu
,
Y.
, and
Li
,
L.
,
2019
, “
Topology Optimization-Guided Lattice Composites and Their Mechanical Characterizations
,”
Composites Part B: Eng.
,
160
, pp.
402
411
.
56.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
26th Annual Conference on Neural Information Processing Systems
,
Lake Tahoe, NV
,
Dec 3–8
.
57.
Chen
,
Y.
,
Huang
,
A.
,
Wang
,
Z.
,
Antonoglou
,
I.
,
Schrittwieser
,
J.
,
Silver
,
D.
, and
de Freitas
,
N.
,
2018
, “
Bayesian Optimization in AlphaGo
,” arXiv:1812.06855 .
58.
Oh
,
C.
,
Gavves
,
E.
, and
Welling
,
M.
,
2018
, “
BOCK: Bayesian Optimization With Cylindrical Kernels
,”
35th International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
.
59.
Pyzer-Knapp
,
E. O.
,
2018
, “
Bayesian Optimization for Accelerated Drug Discovery
,”
IBM. J. Res. Dev.
,
62
(
6
), pp.
1
7
.
60.
Korovina
,
K.
,
Xu
,
S.
,
Kandasamy
,
K.
,
Neiswanger
,
W.
,
Poczos
,
B.
,
Schneider
,
J.
, and
Xing
,
E. P.
,
2020
, “
ChemBO: Bayesian Optimization of Small Organic Molecules With Synthesizable Recommendations
,”
23rd International Conference on Artificial Intelligence and Statistics
,
Online
,
Aug. 26-28
.
61.
Sheikh
,
H. M.
,
Shabbir
,
Z.
,
Ahmed
,
H.
,
Waseem
,
M. H.
, and
Sheikh
,
M. Z.
,
2017
, “
Computational Fluid Dynamics Analysis of a Modified Savonius Rotor and Optimization Using Response Surface Methodology
,”
Wind Eng.
,
41
(
5
), pp.
285
296
.
62.
Tušar
,
T.
,
Brockhoff
,
D.
, and
Hansen
,
N.
,
2019
, “
Mixed-Integer Benchmark Problems for Single- and Bi-objective Optimization
,”
GECCO '19: Genetic and Evolutionary Computation Conference
,
Prague, Czech Republic
,
July 13–17
.
63.
Bechert
,
D. W.
, and
Bartenwerfer
,
M.
,
1989
, “
The Viscous Flow on Surfaces With Longitudinal Ribs
,”
J. Fluid. Mech.
,
206
, pp.
105
129
.
64.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid. Mech.
,
285
, pp.
69
94
.
65.
Lee
,
S.-J.
, and
Lee
,
S.-H.
,
2001
, “
Flow Field Analysis of a Turbulent Boundary Layer Over a Riblet Surface
,”
Experiments in Fluids
,
30
(
2
), pp.
153
166
.
66.
Bacher
,
E.
, and
Smith
,
C.
,
1985
, “
A Combined Visualization-Anemometry Study of the Turbulent Drag Reducing Mechanisms of Triangular Micro-groove Surface Modifications
,”
Shear Flow Control Conference
,
Boulder, CO
,
Mar. 12–14
.
67.
Savill
,
A. M.
,
1990
, “Drag Reduction by Passive Devices—a Review of some Recent Developments,”
Structure of Turbulence and Drag Reduction
,
A.
Gyr
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
429
465
.
68.
Choi
,
K.-S.
,
1990
, “Drag Reduction Mechanisms and Near-wall Turbulence Structure with Riblets,”
Structure of Turbulence and Drag Reduction
,
A.
Gyr
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
553
560
.
69.
San Diego Supercomputer Center (SDSC)
,
2023
, “
Expanse User Guide
,” https://www.sdsc.edu/support/user_guides/expanse, Accessed December 11, 2023.
You do not currently have access to this content.