Abstract

As artificial intelligence (AI) systems become increasingly capable of performing design tasks, they are expected to be deployed to assist human designers' decision-making in a greater variety of ways. For complex design problems such as those with multiple objectives, one AI may not always perform its expected accuracy due to the complexity of decision-making, and therefore, multiple AIs may be implemented to provide design suggestions. For such assistance to be productive, human designers must develop appropriate confidence in each AI and in themselves and accept or reject AI inputs accordingly. This work conducts a human subjects experiment to examine the development of a human designer's confidence in each AI and self-confidence throughout decision-making assisted by two AIs and how these confidences influence the decision to accept AI inputs. Major findings demonstrate severe decreases in a human designer's confidence especially when working with one or more low-performing AI teammates and/or receiving negative feedback. Additionally, a human designer's decision to accept AI suggestions depends on their self-confidence and confidence in one of the two AIs. Finally, an additional AI does not increase a human designer's likelihood of conforming to AI suggestions. Therefore, in comparison to a scenario with one AI, the results in this work caution against the implementation of an additional AI to AI-assisted decision-making scenarios. The insights also inform the design and management of human–AI teams to improve the outcome of AI-assisted decision-making.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
2.
Chen
,
Q.
,
Wang
,
J.
,
Pope
,
P.
,
(Wayne) Chen
,
W.
, and
Fuge
,
M.
,
2022
, “
Inverse Design of Two-Dimensional Airfoils Using Conditional Generative Models and Surrogate Log-Likelihoods
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021712
.
3.
Chen
,
H. Q.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2013
, “
Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061007
.
4.
Camburn
,
B.
,
Arlitt
,
R.
,
Anderson
,
D.
,
Sanaei
,
R.
,
Raviselam
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2020
, “
Computer-Aided Mind Map Generation via Crowdsourcing and Machine Learning
,”
Res. Eng. Des.
,
31
(
4
), pp.
383
409
.
5.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2019
, “
Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111701
.
6.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
7.
Zhang
,
W.
,
Yang
,
Z.
,
Jiang
,
H.
,
Nigam
,
S.
,
Yamakawa
,
S.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Kara
,
L. B.
,
2019
, “
3D Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Anaheim, CA
,
Aug. 18–21
.
8.
Raina
,
A.
,
Mccomb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
9.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Gyory
,
J. T.
,
Zhang
,
G.
,
McComb
,
C.
,
Cagan
,
J.
,
Stump
,
G.
, et al
,
2022
, “
Decoding the Agility of Artificial Intelligence-Assisted Human Design Teams
,”
Des. Stud.
,
79
, p.
101094
.
10.
Zhang
,
G.
,
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
A Cautionary Tale About the Impact of AI on Human Design Teams
,”
Des. Stud.
,
72
, p.
100990
.
11.
James Wilson
,
H.
, and
Daugherty
,
P. R.
,
2018
,
Collaborative Intelligence: Humans and AI Are Joining Forces, Harvard Business Review
.
12.
Gyory
,
J. T.
,
Soria Zurita
,
N. F.
,
Martin
,
J.
,
Balon
,
C.
,
McComb
,
C.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Versus Artificial Intelligence: A Data-Driven Approach to Real-Time Process Management During Complex Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021405
.
13.
Valdez
,
S.
,
Seepersad
,
C.
, and
Kambampati
,
S.
,
2021
, “
A Framework for Interactive Structural Design Exploration
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Virtual
,
Aug. 17–20
.
14.
Raina
,
A.
,
Puentes
,
L.
,
Cagan
,
J.
, and
Mccomb
,
C.
,
2021
, “
Goal-Directed Design Agents: Integrating Visual Imitation With One-Step Lookahead Optimization for Generative Design
,”
ASME J. Mech. Des.
,
143
(
12
), p.
124501
.
15.
Song
,
H.
,
Evans
,
J.
, and
Fu
,
K.
,
2020
, “
An Exploration-Based Approach to Computationally Supported Design-by-Analogy Using D3
,”
AI EDAM
,
34
(
4
), pp.
444
457
.
16.
Lee
,
J. D.
, and
See
,
K. A.
,
2004
, “
Trust in Automation: Designing for Appropriate Reliance
,”
Human Factors
,
46
(
1
), pp.
50
80
.
17.
Dzindolet
,
M. T.
,
Peterson
,
S. A.
,
Pomranky
,
R. A.
,
Pierce
,
L. G.
, and
Beck
,
H. P.
,
2003
, “
The Role of Trust in Automation Reliance
,”
Int. J. Hum. Comput. Stud.
,
58
(
6
), pp.
697
718
.
18.
Parasuraman
,
R.
, and
Riley
,
V.
,
1997
, “
Humans and Automation: Use, Misuse, Disuse, Abuse
,”
Human Factors
,
39
(
2
), pp.
230
253
.
19.
Hoffman
,
R. R.
,
Johnson
,
M.
,
Bradshaw
,
J. M.
, and
Underbrink
,
A.
,
2013
, “
Trust in Automation
,”
IEEE Intell. Syst.
,
28
(
1
), pp.
84
88
.
20.
Zhang
,
Y.
,
Vera Liao
,
Q.
, and
Bellamy
,
R. K. E.
,
2020
, “
Effect of Confidence and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making
,”
Proceedings of the Conference on Fairness, Accountability, and Transparency
,
Barcelona, Spain
,
Jan. 27–30
.
21.
Bansal
,
G.
,
Nushi
,
B.
,
Kamar
,
E.
,
Weld
,
D. S.
,
Lasecki
,
W. S.
, and
Horvitz
,
E.
,
2019
, “
Updates in Human-AI Teams: Understanding and Addressing the Performance/Compatibility Tradeoff
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Honolulu, HI
,
Jan. 27–Feb. 1
.
22.
Bansal
,
G.
,
Nushi
,
B.
,
Kamar
,
E.
,
Lasecki
,
W. S.
,
Weld
,
D. S.
, and
Horvitz
,
E.
,
2019
, “
Beyond Accuracy: The Role of Mental Models in Human-AI Team Performance
,”
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing
,
Honolulu, HI
,
Jan. 27–Feb. 1
.
23.
Hu
,
W. L.
,
Akash
,
K.
,
Reid
,
T.
, and
Jain
,
N.
,
2019
, “
Computational Modeling of the Dynamics of Human Trust During Human-Machine Interactions
,”
IEEE Trans. Hum. Mach. Syst.
,
49
(
6
), pp.
485
497
.
24.
Chong
,
L.
,
Zhang
,
G.
,
Goucher-Lambert
,
K.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Confidence in Artificial Intelligence and in Themselves: The Evolution and Impact of Confidence on Adoption of AI Advice
,”
Comput. Hum. Behav.
,
127
, p.
107018
.
25.
Chong
,
L.
,
Raina
,
A.
,
Goucher-Lambert
,
K.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Collaborative Design Decision-Making With Artificial Intelligence: Exploring the Evolution and Impact of Human Confidence in AI and in Themselves
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
26.
Mayer
,
R. C.
,
Davis
,
J. H.
, and
Schoorman
,
F. D.
,
1995
, “
An Integrative Model of Organizational Trust
,”
Acad. Manage. Rev.
,
20
(
3
), pp.
709
734
.
27.
Harper
,
A.
,
Mustafee
,
N.
, and
Yearworth
,
M.
,
2021
, “
Facets of Trust in Simulation Studies
,”
Eur. J. Operat. Res.
,
289
(
1
), pp.
197
213
.
28.
Simon
,
H. A.
,
1973
, “
The Structure of ill Structured Problems
,”
Artif. Intell.
,
4
(
3–4
), pp.
181
201
.
29.
Jones
,
J. C.
,
1992
,
Design Methods
,
John Wiley & Sons
,
New York
.
30.
Rowe
,
P. G.
,
1987
,
Design Thinking
,
MIT Press
,
Cambridge, MA
.
31.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: Systematic Approach
,
Springer
,
London, UK
.
32.
Chen
,
L.
, and
Li
,
S.
,
2005
, “
Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
545
557
.
33.
McNeese
,
N. J.
,
Schelble
,
B. G.
,
Canonico
,
L. B.
, and
Demir
,
M.
,
2021
, “
Who/What is My Teammate? Team Composition Considerations in Human-AI Teaming
,”
IEEE Trans. Hum. Mach. Syst.
,
51
(
4
), pp.
288
299
.
34.
Nam
,
C. S.
, and
Lyons
,
J. B.
,
2021
, “Distributed Dynamic Team Trust in Human, Artificial Intelligence, and Robot Teaming,”
Trust in Human-Robot Interaction
,
Academic Press
,
Cambridge, MA
, pp.
301
319
.
35.
Bandura
,
A.
,
Freeman
,
W. H.
, and
Lightsey
,
R.
,
1999
, “
Self-Efficacy: The Exercise of Control
,”
J. Cogn. Psychotherapy
,
13
(
2
), pp.
158
166
.
36.
Van Swol
,
L. M.
,
2011
, “
Forecasting Another’s Enjoyment Versus Giving the Right Answer: Trust, Shared Values, Task Effects, and Confidence in Improving the Acceptance of Advice
,”
Int. J. Forecast.
,
27
(
1
), pp.
103
120
.
37.
Cialdini
,
R. B.
, and
Goldstein
,
N. J.
,
2004
, “
SOCIAL INFLUENCE: Compliance and Conformity
,”
Annu. Rev. Psychol
,
55
(
1
), pp.
591
621
.
38.
Coultas
,
J. C.
,
Van Leeuwen
,
E. J. C.
,
Coultas
,
J. C.
, and
Van Leeuwen
,
E. J. C.
,
2015
, “
Conformity: Definitions, Types, and Evolutionary Grounding
,” pp.
189
202
.
39.
Aljukhadar
,
M.
,
Senecal
,
S.
, and
Daoust
,
C. E.
,
2014
, “
Using Recommendation Agents to Cope With Information Overload
,”
Int. J. Electron. Comm.
,
17
(
2
), pp.
41
70
.
40.
Moré
,
J. J.
, and
Sorensen
,
D. C.
,
1983
, “
Computing a Trust Region Step
,”
SIAM Journal on Scientific and Statistical Computing
,
4
(
3
), pp.
553
572
.
41.
Chowdhury
,
S.
,
Endres
,
M.
, and
Lanis
,
T. W.
,
2002
, “
Preparing Students for Success in Team Work Environments: The Importance of Building Confidence
,”
J. Manage. Issues
,
14
(
3
), pp.
346
359
. https://www.jstor.org/stable/40604395
42.
Bandura
,
A.
,
1982
, “
Self-Efficacy Mechanism in Human Agency
,”
Am. Psychol.
,
37
(
2
), pp.
122
147
.
43.
Gist
,
M. E.
, and
Mitchell
,
T. R.
,
1992
, “
Self-Efficacy: A Theoretical Analysis of its Determinants and Malleability
,”
Acad. Manage. Rev.
,
17
(
2
), pp.
183
211
.
44.
Tversky
,
A.
, and
Kahneman
,
D.
,
1991
, “
Loss Aversion in Riskless Choice: A Reference-Dependent Model
,”
Q. J. Econom.
,
106
(
4
), pp.
1039
1061
.
45.
Sweller
,
J.
,
1988
, “
Cognitive Load During Problem Solving: Effects on Learning
,”
Cogn. Sci.
,
12
(
2
), pp.
257
285
.
46.
Asch
,
S. E.
,
1956
, “
Studies of Independence and Conformity: I. A Minority of one Against a Unanimous Majority
,”
Psychol. Monogr.: General Appl.
,
70
(
9
), pp.
1
70
.
47.
Hogg
,
M. A.
, and
Vaughan
,
G. M.
,
1995
,
Social Psychology: An Introduction
,
Prentice-Hall
,
London, UK
.
48.
Jobe
,
J. B.
,
2003
, “
Cognitive Psychology and Self-Reports: Models and Methods
,”
Quality Life Res.
,
12
(
3
), pp.
219
227
.
49.
Williams
,
P. G.
,
Rau
,
H. K.
,
Suchy
,
Y.
,
Thorgusen
,
S. R.
, and
Smith
,
T. W.
,
2017
, “
On the Validity of Self-Report Assessment of Cognitive Abilities: Attentional Control Scale Associations With Cognitive Performance, Emotional Adjustment, and Personality
,”
Psychol. Assess.
,
29
(
5
), pp.
519
530
.
50.
Baumeister
,
R. F.
,
Vohs
,
K. D.
, and
Funder
,
D. C.
,
2007
, “
Psychology as the Science of Self-Reports and Finger Movements: Whatever Happened to Actual Behavior?
Persp. Psychol. Sci.
,
2
(
4
), pp.
396
403
.
51.
Kvam
,
P. D.
,
Pleskac
,
T. J.
,
Yu
,
S.
, and
Busemeyer
,
J. R.
,
2015
, “
Interference Effects of Choice on Confidence: Quantum Characteristics of Evidence Accumulation
,”
Proc. Natl. Acad. Sci.
,
112
(
34
), pp.
10645
10650
.
You do not currently have access to this content.