Abstract

Deployable polyhedral grippers have attracted increasing attention for their priority in noncontact capturing missions. Enrichment of these grippers may benefit the conduction of various capturing tasks. In this paper, novel deployable polyhedral grippers are presented. A design flow is proposed for the structural designs of diverse grippers. The core problem during the construction is reducible to the structural designs and combination of multiple synchronously deployable modules. Each module, containing three faces connected by two revolute joints, can realize one-degree-of-freedom deployment. Type synthesis of synchronously deployable modules adopting different layouts of revolute joints is conducted. The mobility and kinematics of these modules are analyzed to verify the achieved motion. As examples, four deployable polyhedral grippers based on different polyhedrons and deployment diagrams are presented. The deployment performance of the prototype proves the validity of the proposed design method and exhibits the potential of these deployable polyhedral grippers for diverse capturing missions.

References

1.
Yoshikawa
,
T.
,
2010
, “
Multifingered Robot Hands: Control for Grasping and Manipulation
,”
Annu. Rev. Control
,
34
(
2
), pp.
199
208
.
2.
Ueda
,
J.
,
Kondo
,
M.
, and
Ogasawara
,
T.
,
2010
, “
The Multifingered NAIST Hand System for Robot In-Hand Manipulation
,”
Mech. Mach. Theory
,
45
(
2
), pp.
224
238
.
3.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
4.
Khadivar
,
F.
, and
Billard
,
A.
,
2023
, “
Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation Under Disturbances and Unknown Dynamics
,”
IEEE Trans. Rob.
,
39
(
5
), pp.
3350
3367
.
5.
Russo
,
M.
,
Ceccarelli
,
M.
,
Corves
,
B.
,
Hüsing
,
M.
,
Lorenz
,
M.
,
Cafolla
,
D.
, and
Carbone
,
G.
,
2017
, “
Design and Test of a Gripper Prototype for Horticulture Products
,”
Rob. Comput.-Integr. Manuf.
,
44
, pp.
266
275
.
6.
Liu
,
C.
,
Cheng
,
J.
,
Li
,
Z.
,
Cheng
,
C.
,
Zhang
,
C.
,
Zhang
,
Y.
, and
Zhong
,
R. Y.
,
2020
, “
Design of a Self-Adaptive Gripper With Rigid Fingers for Industrial Internet
,”
Rob. Comput.-Integr. Manuf.
,
65
, p.
101976
.
7.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D’Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Rob.
,
2
(
3
), pp.
107
116
.
8.
Cui
,
Y.
,
Liu
,
X. J.
,
Dong
,
X.
,
Zhou
,
J.
, and
Zhao
,
H.
,
2021
, “
Enhancing the Universality of a Pneumatic Gripper via Continuously Adjustable Initial Grasp Postures
,”
IEEE Trans. Rob.
,
37
(
5
), pp.
1604
1618
.
9.
Fernández
,
J. J.
,
Prats
,
M.
,
Sanz
,
P. J.
,
García
,
J. C.
,
Marín
,
R.
,
Robinson
,
M.
,
Ribas
,
D.
, and
Ridao
,
P.
,
2013
, “
Grasping for the Seabed: Developing a New Underwater Robot Arm for Shallow-Water Intervention
,”
IEEE Robot. Autom. Mag.
,
20
(
4
), pp.
121
130
.
10.
Ishizu
,
K.
,
Nakayama
,
H.
,
Sakagami
,
N.
,
Shibata
,
M.
,
Kawamura
,
S.
,
Matsuda
,
S.
, and
Mitsui
,
A.
,
2014
, “
Preliminary Experiments of a Human-Portable Underwater Gripper Robot for Dexterous Tasks
,”
OCEANS 2014–TAIPEI
,
Taipei, Taiwan, China
,
Apr. 7–10
, IEEE, pp.
1
7
.
11.
Zhang
,
Q.
,
Chen
,
J.
,
Huo
,
L.
,
Kong
,
F.
,
Du
,
L.
,
Cui
,
S.
,
Zhao
,
Y.
, and
Tang
,
Y.
,
2014
, “
7000M Pressure Experiment of a Deep-sea Hydraulic Manipulator System
,”
2014 Oceans–St. John's
,
St. Johns, NL, Canada
,
Sept. 14–19
, IEEE, pp.
1
5
.
12.
Irawan
,
A.
,
Yin
,
T. Y.
,
Lezaini
,
W. M. N. W.
,
Razali
,
A. R.
, and
Yusof
,
M. S. M.
,
2016
, “
Reconfigurable Foot-to-Gripper leg for Underwater Bottom Operator, Hexaquad
,”
2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS)
,
Penang, Malaysia
,
Dec. 13–14
, IEEE, pp.
94
99
.
13.
Stuart
,
H. S.
,
Wang
,
S.
,
Gardineer
,
B.
,
Christensen
,
D. L.
,
Aukes
,
D. M.
, and
Cutkosky
,
M.
,
2014
, “
A Compliant Underactuated Hand with Suction Flow for Underwater Mobile Manipulation
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE, pp.
6691
6697
.
14.
Stuart
,
H.
,
Wang
,
S.
,
Khatib
,
O.
, and
Cutkosky
,
M. R.
,
2017
, “
The Ocean One Hands: An Adaptive Design for Robust Marine Manipulation
,”
Int. J. Rob. Res.
,
36
(
2
), pp.
150
166
.
15.
Li
,
G.
, and
Xu
,
P.
,
2020
, “
Design and Analysis of a Deployable Grasping Mechanism for Capturing Noncooperative Space Targets
,”
Aerosp. Sci. Technol.
,
106
, p.
106230
.
16.
Gao
,
C.
,
Huang
,
H.
,
Li
,
Y.
, and
Li
,
B.
,
2022
, “
Design and Analysis of a Three-Fingered Deployable Metamorphic Robotic Grasper
,”
ASME J. Mech. Des.
,
144
(
8
), p.
083302
.
17.
Galloway
,
K. C.
,
Becker
,
K. P.
,
Phillips
,
B.
,
Kirby
,
J.
,
Licht
,
S.
,
Tchernov
,
D.
,
Wood
,
R. J.
, and
Gruber
,
D. F.
,
2016
, “
Soft Robotic Grippers for Biological Sampling on Deep Reefs
,”
Soft Rob.
,
3
(
1
), pp.
23
33
.
18.
Phillips
,
B. T.
,
Becker
,
K. P.
,
Kurumaya
,
S.
,
Galloway
,
K. C.
,
Whittredge
,
G.
,
Vogt
,
D. M.
,
Teeple
,
Clark B.
, et al
,
2018
, “
A Dexterous, Glove-Based Teleoperable Low-Power Soft Robotic Arm for Delicate Deep-Sea Biological Exploration
,”
Sci. Rep.
,
8
(
1
), pp.
14779
.
19.
Mura
,
D.
,
Barbarossa
,
M.
,
Dinuzzi
,
G.
,
Grioli
,
G.
,
Caiti
,
A.
, and
Catalano
,
M. G.
,
2018
, “
A Soft Modular end Effector for Underwater Manipulation: A Gentle, Adaptable Grasp for the Ocean Depths
,”
IEEE Robot. Autom. Mag.
,
25
(
4
), pp.
45
56
.
20.
Backus
,
S. B.
,
Onishi
,
R.
,
Bocklund
,
A.
,
Berg
,
A.
,
Contreras
,
E. D.
, and
Parness
,
A.
,
2020
, “
Design and Testing of the JPL-Nautilus Gripper for Deep-Ocean Geological Sampling
,”
J. Field Rob.
,
37
(
6
), pp.
972
986
.
21.
Sinatra
,
N. R.
,
Teeple
,
C. B.
,
Vogt
,
D. M.
,
Parker
,
K. K.
,
Gruber
,
D. F.
, and
Wood
,
R. J.
,
2019
, “
Ultragentle Manipulation of Delicate Structures Using a Soft Robotic Gripper
,”
Sci. Rob.
,
4
(
33
), pp.
eaax5425
.
22.
Gong
,
Z.
,
Fang
,
X.
,
Chen
,
X.
,
Chen
,
J.
,
Xie
,
Z.
,
Liu
,
J.
,
Chen
,
B.
, et al
,
2021
, “
A Soft Manipulator for Efficient Delicate Grasping in Shallow Water: Modeling, Control, and Real-World Experiments
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
449
469
.
23.
Zhang
,
B.
,
Liang
,
B.
,
Wang
,
Z.
,
Mi
,
Y.
,
Zhang
,
Y.
, and
Chen
,
Z.
,
2017
, “
Coordinated Stabilization for Space Robot After Capturing a Noncooperative Target With Large Inertia
,”
Acta Astronaut.
,
134
, pp.
75
84
.
24.
Stolfi
,
A.
,
Gasbarri
,
P.
, and
Sabatini
,
M.
,
2017
, “
A Combined Impedance-pd Approach for Controlling a Dual-Arm Space Manipulator in the Capture of a Non-Cooperative Target
,”
Acta Astronaut.
,
139
, pp.
243
253
.
25.
Billard
,
A.
, and
Kragic
,
D.
,
2019
, “
Trends and Challenges in Robot Manipulation
,”
Science
,
364
(
6446
), pp.
eaat8414
.
26.
Gruber
,
D. F.
, and
Wood
,
R. J.
,
2022
, “
Advances and Future Outlooks in Soft Robotics for Minimally Invasive Marine Biology
,”
Sci. Rob.
,
7
(
66
), pp.
eabm6807
.
27.
Teoh
,
Z. E.
,
Phillips
,
B. T.
,
Becker
,
K. P.
,
Whittredge
,
G.
,
Weaver
,
J. C.
,
Hoberman
,
C.
,
Gruber
,
D. F.
, and
Wood
,
R. J.
,
2018
, “
Rotary-Actuated Folding Polyhedrons for Midwater Investigation of Delicate Marine Organisms
,”
Sci. Rob.
,
3
(
20
), pp.
eaat5276
.
28.
Xu
,
Y.
,
Chen
,
Y.
,
Liu
,
W.
,
Ma
,
X.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2020
, “
Degree of Freedom and Dynamic Analysis of the Multi-Loop Coupled Passive-Input Overconstrained Deployable Tetrahedral Mechanisms for Truss Antennas
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011010
.
29.
Cao
,
W.
, and
Cheng
,
P.
,
2022
, “
Design and Kinematic Analysis of a Novel Deployable Antenna Mechanism for Synthetic Aperture Radar Satellites
,”
ASME J. Mech. Des.
,
144
(
11
), p.
114502
.
30.
Meng
,
Q.
,
Liu
,
X.-J.
, and
Xie
,
F.
,
2022
, “
Structure Design and Kinematic Analysis of a Class of Ring Truss Deployable Mechanisms for Satellite Antennas Based on Novel Basic Units
,”
Mech. Mach. Theory
,
174
, p.
104881
.
31.
Zhang
,
Y.
,
Huang
,
H.
,
Mei
,
T.
, and
Li
,
B.
,
2022
, “
Type Synthesis of Single-Loop Deployable Mechanisms Based on Improved Atlas Method for Single-DOF Grasping Manipulators
,”
Mech. Mach. Theory
,
169
, p.
104656
.
32.
Zhang
,
Y.
,
Gao
,
C.
,
Xu
,
P.
, and
Li
,
B.
,
2023
, “
Type Synthesis of Deployable and Symmetrical Single-Loop Mechanisms for Constructing Aerospace Platforms
,”
Mech. Mach. Theory
,
181
, p.
105212
.
33.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot with Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
34.
Gu
,
Y.
,
Wei
,
G.
, and
Chen
,
Y.
,
2021
, “
Thick-Panel Origami Cube
,”
Mech. Mach. Theory
,
164
, p.
104411
.
35.
Brown
,
N. C.
,
Ynchausti
,
C.
,
Lytle
,
A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2022
, “
Approaches for Minimizing Joints in Single-Degree-of-Freedom Origami-Based Mechanisms
,”
ASME J. Mech. Des.
,
144
(
10
), p.
103301
.
36.
Huang
,
L.
,
Zeng
,
P.
,
Yin
,
L.
,
Liu
,
B.
,
Yang
,
Y.
, and
Huang
,
J.
,
2022
, “
Design and Kinematic Analysis of a Rigid-Origami-Based Underwater Sampler With Deploying-Encircling Motion
,”
Mech. Mach. Theory
,
174
, p.
104886
.
37.
Xia
,
Q.
,
Xu
,
L.
,
Liu
,
C.
,
Yang
,
Y.
,
Chen
,
Y.
,
Zhang
,
S.
, and
Yang
,
C.
,
2022
, “
An Omnidirectional Encircled Deployable Polyhedral Gripper for Contactless Delicate Midwater Creatures Sampling
,”
Adv. Eng. Mater.
,
25
(
8
), p.
2201416
.
38.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
39.
Yang
,
F.
,
You
,
Z.
, and
Chen
,
Y.
,
2020
, “
Mobile Assembly of Two Bennett Linkages and Its Application to Transformation Between Cuboctahedron and Octahedron
,”
Mech. Mach. Theory
,
145
, p.
103698
.
40.
Liu
,
J.
,
Zhao
,
X.
, and
Ding
,
H.
,
2020
, “
A Class of N-Sided Antiprism Deployable Polyhedral Mechanisms Based on an Asymmetric Eight-Bar Linkage
,”
Mech. Mach. Theory
,
150
, p.
103882
.
41.
Meng
,
Q.
,
Xie
,
F.
,
Tang
,
R.
, and
Liu
,
X.-J.
,
2023
, “
Deployable Polyhedral Mechanisms With Radially Reciprocating Motion Based on Novel Basic Units and an Additive-Then-Subtractive Design Strategy
,”
Mech. Mach. Theory
,
181
, p.
105174
.
42.
Yu
,
J.
,
Li
,
S.
,
Pei
,
X.
,
Bi
,
S.
, and
Zong
,
G.
,
2011
, “
A Unified Approach to Type Synthesis of Both Rigid and Flexure Parallel Mechanisms
,”
Sci. China Technol. Sci
,
54
(
5
), pp.
1206
1219
.
43.
Xie
,
F.
,
Liu
,
X.-J.
, and
Li
,
T.
,
2013
, “
Type Synthesis and Typical Application of 1T2R-Type Parallel Robotic Mechanisms
,”
Math. Probl. Eng.
,
54
, pp.
497
504
.
44.
Meng
,
Q.
,
Liu
,
X.-J.
, and
Xie
,
F.
,
2022
, “
Design and Development of a Schönflies-Motion Parallel Robot With Articulated Platforms and Closed-Loop Passive Limbs
,”
Rob. Comput.-Integr. Manuf.
,
77
, p.
102352
.
45.
Meng
,
Q.
,
Xie
,
F.
,
Tang
,
R.
, and
Liu
,
X.-J.
,
2022
, “
Novel Closed-Loop Deployable Mechanisms and Integrated Support Trusses for Planar Antennas of Synthetic Aperture Radar
,”
Aerosp. Sci. Technol.
,
129
, p.
107819
.
46.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.
47.
Meng
,
Q.
,
Xie
,
F.
, and
Liu
,
X.-J.
,
2018
, “
Conceptual Design and Kinematic Analysis of a Novel Parallel Robot for High-Speed Pick-and-Place Operations
,”
Front. Mech. Eng.
,
13
(
2
), pp.
211
224
.
You do not currently have access to this content.