Abstract

Given the foundational role of system requirements in design projects, designers can benefit from classifying, comparing, and observing connections between requirements. Manually undertaking these processes, however, can be laborious and time-consuming. Previous studies have employed Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art natural language processing (NLP) deep neural network model, to automatically analyze written requirements. Yet, it remains unclear whether BERT can sufficiently capture the nuances that differentiate requirements between and within design documents. This work evaluates BERT’s performance on two requirement classification tasks (one inter- document and one intra-document) executed on a corpus of 1,303 requirements sourced from five system design projects. First, in the “parent document classification” task, a BERT model is fine-tuned to classify requirements according to their originating project. A separate BERT model is then fine-tuned on a “functional classification” task where each requirement is classified as either functional or nonfunctional. Our results also include a comparison with a baseline model, Word2Vec, and demonstrate that our model achieves higher classification accuracy. When evaluated on test sets, the former model receives a Matthews correlation coefficient (MCC) of 0.95, while the latter receives an MCC of 0.82, indicating BERT’s ability to reliably distinguish requirements. This work then explores the application of BERT’s representations, known as embeddings, to identify similar requirements and predict requirement change.

References

1.
Lops
,
P.
,
De Gemmis
,
M.
, and
Semeraro
,
G.
,
2011
, “Content-Based Recommender Systems: State of the Art and Trends,”
Recommender Systems Handbook
,
Springer
,
New York
, pp.
73
105
.
2.
Alhindawi
,
N. T.
,
2018
, “
Information Retrieval-Based Solution for Software Requirements Classification and Mapping
,”
Proceedings of the 2018 5th International Conference on Mathematics and Computers in Sciences and Industry (MCSI)
,
Confu, Greece
,
Aug. 25–27
, IEEE, pp.
147
154
.
3.
Yadla
,
S.
,
Hayes
,
J. H.
, and
Dekhtyar
,
A.
,
2005
, “
Tracing Requirements to Defect Reports: An Application of Information Retrieval Techniques
,”
Innov. Syst. Softw. Eng.
,
1
(
2
), pp.
116
124
.
4.
Hu
,
H.
,
Wen
,
Y.
,
Chua
,
T.-S.
, and
Li
,
X.
,
2014
, “
Toward Scalable Systems for Big Data Analytics: A Technology Tutorial
,”
IEEE Access
,
2
, pp.
652
687
.
5.
Rajpathak
,
D.
,
Peranandam
,
P. M.
, and
Ramesh
,
S.
,
2022
, “
Automatic Development of Requirement Linking Matrix Based on Semantic Similarity for Robust Software Development
,”
J. Syst. Softw.
,
186
, p.
111211
.
6.
Mihany
,
F. A.
,
Moussa
,
H.
,
Kamel
,
A.
,
Ezzat
,
E.
, and
Ilyas
,
M.
,
2016
, “
An Automated System for Measuring Similarity Between Software Requirements
,”
Proceedings of the 2nd Africa and Middle East Conference on Software Engineering
,
Cairo, Egypt
,
May 28–29
, pp.
46
51
.
7.
Zamani
,
K.
,
2021
, “
A Prediction Model for Software Requirements Change Impact
,”
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)
,
Melbourne, Australia
,
Nov. 15–19
, IEEE, pp.
1028
1032
.
8.
Pahl
,
G.
, and
Beitz
,
W.
,
2015
,
Engineering Design: A Systematic Approach
,
Springer Science+ Business Media
,
Berlin
.
9.
Krueger
,
C.
,
2001
, “
Easing the Transition to Software Mass Customization
,”
International Workshop on Software Product-Family Engineering
,
Springer
,
Berlin Heidelberg
, pp.
282
293
.
10.
Hein
,
P. H.
,
Kames
,
E.
,
Chen
,
C.
, and
Morkos
,
B.
,
2021
, “
Employing Machine Learning Techniques to Assess Requirement Change Volatility
,”
Res. Eng. Des.
,
32
(
2
), pp.
245
269
.
11.
Hein
,
P. H.
,
Kames
,
E.
,
Chen
,
C.
, and
Morkos
,
B.
,
2022
, “
Reasoning Support for Predicting Requirement Change Volatility Using Complex Network Metrics
,”
J. Eng. Des.
,
33
(
11
), pp.
811
837
.
12.
Ahmad
,
N.
,
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2012
, “
Change Impact on a Product and Its Redesign Process: A Tool for Knowledge Capture and Reuse
,”
Res. Eng. Des.
,
24
(
3
), pp.
219
244
.
13.
Morkos
,
B.
,
Mathieson
,
J.
, and
Summers
,
J. D.
,
2014
, “
Comparative Analysis of Requirements Change Prediction Models: Manual, Linguistic, and Neural Network
,”
Res. Eng. Des.
,
25
(
2
), pp.
139
156
.
14.
de Araújo
,
A. F.
, and
Marcacini
,
R. M.
,
2021
, “
Re-Bert: Automatic Extraction of Software Requirements From App Reviews Using Bert Language Model
,”
Proceedings of the 36th Annual ACM Symposium on Applied Computing
,
Virtual
,
May 22–26
,
New York
, pp.
1321
1327
.
15.
Li
,
Y.
, and
Yang
,
T.
,
2018
, “Word Embedding for Understanding Natural Language: A Survey,”
Guide to Big Data Applications
, Vol.
26
,
Springer International Publishing
,
Cham, Switzerland
, pp.
83
104
.
16.
Hey
,
T.
,
Keim
,
J.
,
Koziolek
,
A.
, and
Tichy
,
W. F.
,
2020
, “
Norbert: Transfer Learning for Requirements Classification
,”
Proceedings of the 2020 IEEE 28th International Requirements Engineering Conference (RE)
,
Zurich, Switzerland
,
Aug. 31–Sept. 4
, IEEE, pp.
169
179
.
17.
Akay
,
H.
, and
Kim
,
S.-G.
,
2020
, “
Measuring Functional Independence in Design With Deep-Learning Language Representation Models
,”
Procedia CIRP
,
91
, pp.
528
533
.
18.
Lin
,
J.
,
Liu
,
Y.
,
Zeng
,
Q.
,
Jiang
,
M.
, and
Cleland-Huang
,
J.
,
2021
, “
Traceability Transformed: Generating More Accurate Links with Pre-Trained Bert Models
,”
Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
,
Madrid Spain
,
May 25–28
, IEEE, pp.
324
335
.
19.
Abbas
,
M.
,
Ferrari
,
A.
,
Shatnawi
,
A.
,
Enoiu
,
E.
,
Saadatmand
,
M.
, and
Sundmark
,
D.
,
2022
, “
On the Relationship Between Similar Requirements and Similar Software
,”
Requir Eng.
,
28
(1), pp.
23
27
.
20.
Navarro-Almanza
,
R.
,
Juarez-Ramirez
,
R.
, and
Licea
,
G.
,
2017
, “
Towards Supporting Software Engineering Using Deep Learning: A Case of Software Requirements Classification
,”
Proceedings of the 2017 5th International Conference in Software Engineering Research and Innovation (CONISOFT)
,
Mérida, Mexico
,
Oct. 25–27
, IEEE, pp.
116
120
.
21.
Chen
,
C.
,
Wei
,
S.
, and
Morkos
,
B.
,
2023
, “
Bridging the Knowledge Gap Between Design Requirements and CAD-A Joint Embedding Approach
,”
Proceedings of the 2023 ASEE Annual Conference & Exposition
,
Baltimore, MD
,
June 25–28
.
22.
Karl
,
T.
, and
Ulrich
,
S. E.
,
2018
,
Product Design and Development
, 5th ed.,
McGraw-Hill Higher Education
,
Boston, MA
.
23.
Kamalrudin
,
M.
,
Mustafa
,
N.
, and
Sidek
,
S.
,
2018
, “
A Template for Writing Security Requirements
,”
Proceedings of the Requirements Engineering for Internet of Things: 4th Asia-Pacific Symposium, APRES 2017
,
Melaka, Malaysia
,
Nov. 9–10
, Proceedings 4,
Springer
, pp.
73
86
.
24.
Condamines
,
A.
, and
Warnier
,
M.
,
2016
, “
Towards the Creation of a CNL Adapted to Requirements Writing by Combining Writing Recommendations and Spontaneous Regularities: Example in a Space Project
,”
Lang. Resour. Eval.
,
51
(
1
), pp.
221
247
.
26.
2021
,
Simplified Technical English, AeroSpace and Defense Industries, Association of Europe, Issue 8
. https://technicalwritingexpert.com/wp-content/uploads/2021/11/ASD-STE100-ISSUE-8.pdf
27.
Summers
,
J. D.
,
Joshi
,
S.
, and
Morkos
,
B.
,
2014
, “
Requirements Evolution: Relating Functional and Non-Functional Requirement Change on Student Project Success
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, American Society of Mechanical Engineers, p. V003T04A002.
28.
Shankar
,
P.
,
Morkos
,
B.
,
Yadav
,
D.
, and
Summers
,
J. D.
,
2020
, “
Towards the Formalization of Non-Functional Requirements in Conceptual Design
,”
Res. Eng. Des.
,
31
(
4
), pp.
449
469
.
29.
Chung
,
L.
, and
do Prado Leite
,
J. C. S.
,
2009
, “On Non-Functional Requirements in Software Engineering,”
Conceptual Modeling: Foundations and Applications: Essays in Honor of John Mylopoulos
,
Springer
,
Berlin/Heidelberg
, pp.
363
379
.
30.
Kurtanović
,
Z.
, and
Maalej
,
W.
,
2017
, “
Automatically Classifying Functional and Non-Functional Requirements Using Supervised Machine Learning
,”
Proceedings of the 2017 IEEE 25th International Requirements Engineering Conference (RE)
,
Lisbon, Portugal
,
Sept. 4–8
, IEEE, pp.
490
495
.
31.
Boetticher
,
G.
,
2007
, “The PROMISE Repository of Empirical Software Engineering Data,” http://promisedata.org/repository
32.
Winkler
,
J.
, and
Vogelsang
,
A.
,
2016
, “
Automatic Classification of Requirements Based on Convolutional Neural Networks
,”
Proceedings of the 2016 IEEE 24th International Requirements Engineering Conference Workshops (REW)
,
Beijing, China
,
Sept. 12–16
, IEEE, pp.
39
45
.
33.
Akay
,
H.
, and
Kim
,
S.-G.
,
2020
, “
Design Transcription: Deep Learning Based Design Feature Representation
,”
CIRP Ann.
,
69
(
1
), pp.
141
144
.
34.
Hayes
,
J. H.
,
Dekhtyar
,
A.
, and
Sundaram
,
S. K.
,
2006
, “
Advancing Candidate Link Generation for Requirements Tracing: The Study of Methods
,”
IEEE Trans. Software Eng.
,
32
(
1
), pp.
4
19
.
35.
Eder
,
S.
,
Femmer
,
H.
,
Hauptmann
,
B.
, and
Junker
,
M.
,
2015
, “
Configuring Latent Semantic Indexing for Requirements Tracing
,”
Proceedings of the 2015 IEEE/ACM 2nd International Workshop on Requirements Engineering and Testing
,
Florence, Italy
,
May 18
, IEEE, pp.
27
33
.
36.
Guo
,
J.
,
Cheng
,
J.
, and
Cleland-Huang
,
J.
,
2017
, “
Semantically Enhanced Software Traceability Using Deep Learning Techniques
,”
Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)
,
Buenos Aires, Argentina
,
May 20–28
IEEE, pp.
3
14
.
37.
Ferrari
,
A.
,
Spagnolo
,
G. O.
, and
Gnesi
,
S.
,
2017
, “
Pure: A Dataset of Public Requirements Documents
,”
Proceedings of the 2017 IEEE 25th International Requirements Engineering Conference (RE)
,
Lisbon, Portugal
,
Sept. 4–8
, IEEE, pp.
502
505
.
38.
Clarkson
,
J.
, and
Eckert
,
C.
,
2010
,
Design Process Improvement: A Review of Current Practice
,
Springer-Verlag
,
London
.
39.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
40.
Morkos
,
B.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “
Predicting Requirement Change Propagation, Using Higher Order Design Structure Matrices: An Industry Case Study
,”
J. Eng. Des.
,
23
(
12
), pp.
905
926
.
41.
Hein
,
P. H.
,
Menon
,
V.
, and
Morkos
,
B.
,
2015
, “
Exploring Requirement Change Propagation Through the Physical and Functional Domain
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Boston, MA
,
Aug. 2–5
,
New York
, pp.
1
12
.
42.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of NAACL-HLT
,
Minneapolis, MN
,
June 2–7
.
43.
Taylor
,
W. L.
,
1953
, “
‘Cloze Procedure’: A New Tool for Measuring Readability
,”
J. Q.
,
30
(
4
), pp.
415
433
.
44.
Hein
,
P. H.
,
Voris
,
N.
, and
Morkos
,
B.
,
2017
, “
Predicting Requirement Change Propagation Through Investigation of Physical and Functional Domains
,”
Res. Eng. Des.
,
29
(
2
), pp.
309
328
.
45.
Hein
,
P. H.
,
Morkos
,
B.
, and
Sen
,
C.
,
2017
, “
Utilizing Node Interference Method and Complex Network Centrality Metrics to Explore Requirement Change Propagation
,”
Proceedings of the Volume 1: 37th Computers and Information in Engineering Conference
,
Cleveland, OH
, p. V001T02A081.
46.
Chen
,
C.
,
Mullis
,
J.
, and
Morkos
,
B.
,
2021
, “
A Topic Modeling Approach to Study Design Requirements
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online, Virtual
.
47.
Cheng
,
C.
, and
Morkos
,
B.
,
2023
, “
Exploring Topic Modelling for Generalising Design Requirements in Complex Design
,”
J. Eng. Des.
, pp.
1
19
.
48.
Reimers
,
N.
, and
Gurevych
,
I.
,
2019
, “
Sentence-Bert: Sentence Embeddings Using Siamese Bert-Networks
,”
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
,
Hong Kong, China
,
Nov. 3–7
.
49.
Lin
,
Y.
,
Tan
,
Y. C.
, and
Frank
,
R.
,
2019
, “
Open Sesame: Getting Inside BERT’s Linguistic Knowledge
,”
Association for Computational Linguistics
,
Florence, Italy
,
July 28–Aug. 2
.
50.
Mullis
,
J.
,
2022
, “
Efficacy of Deep Neural Networks in Natural Language Processing for Classifying Requirements by Origin and Functionality: An Application of Bert in System Requirements
,” Dissertation, University of Georgia, Athens, GA.
51.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
.
52.
McHugh
,
M. L.
,
2012
, “
Interrater Reliability: The Kappa Statistic
,”
Biochem. Med. (Zagreb)
,
22
(
3
), pp.
276
282
.
53.
Wolf
,
T.
,
Debut
,
L.
,
Sanh
,
V.
,
Chaumond
,
J.
,
Delangue
,
C.
,
Moi
,
A.
,
Cistac
,
P.
,
Rault
,
T.
,
Louf
,
R.
, and
Funtowicz
,
M.
,
2020
, “
Transformers: State-of-the-Art Natural Language Processing
,”
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
,
Online
.
54.
Jurman
,
G.
,
Riccadonna
,
S.
, and
Furlanello
,
C.
,
2012
, “
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
,”
PLOS One
,
7
(
8
), pp.
1
9
.
55.
Chicco
,
D.
,
Tötsch
,
N.
, and
Jurman
,
G.
,
2021
, “
The Matthews Correlation Coefficient (MCC) Is More Reliable Than Balanced Accuracy, Bookmaker Informedness, and Markedness in Two-Class Confusion Matrix Evaluation
,”
BioData Min.
,
14
(
1
), pp.
1
22
.
56.
Van der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-SNE
,”
J. Mach. Learn. Res.
,
9
(
11
), pp.
2579
2605
.
57.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
, and
Dubourg
,
V.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
58.
Aggarwal
,
C. C.
,
Hinneburg
,
A.
, and
Keim
,
D. A.
,
2001
, “
On the Surprising Behavior of Distance Metrics in High Dimensional Space
,”
Proceedings of the Database Theory—ICDT 2001: 8th International Conference
,
London, UK
,
Jan. 4–6
,
Springer
, pp.
420
434
.
59.
Johnson
,
J.
,
Douze
,
M.
, and
Jegou
,
H.
,
2021
, “
Billion-Scale Similarity Search With GPUs
,”
IEEE Trans. Big Data
,
7
(
3
), pp.
535
547
.
60.
Hinkle
,
D. E.
,
Wiersma
,
W.
, and
Jurs
,
S. G.
,
2003
,
Applied Statistics for the Behavioral Sciences
, Vol.
663
,
Houghton Mifflin College Division
,
Boston, MA
.
61.
Shankar
,
P.
,
Morkos
,
B.
, and
Summers
,
J. D.
,
2012
, “
Reasons for Change Propagation: A Case Study in an Automotive OEM
,”
Res. Eng. Des.
,
23
(
4
), pp.
291
303
.
62.
Song
,
K.
,
Tan
,
X.
,
Qin
,
T.
,
Lu
,
J.
, and
Liu
,
T.-Y.
,
2020
, “
Mpnet: Masked and Permuted Pre-Training for Language Understanding
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
16857
16867
.
You do not currently have access to this content.