Abstract

Generative adversarial networks (GANs) have shown remarkable success in various generative design tasks, from topology optimization to material design, and shape parametrization. However, most generative design approaches based on GANs lack evaluation mechanisms to ensure the generation of diverse samples. In addition, no GAN-based generative design model incorporates user sentiments in the loss function to generate samples with high desirability from the aggregate perspectives of users. Motivated by these knowledge gaps, this paper builds and validates a novel GAN-based generative design model with an offline design evaluation function to generate samples that are not only realistic but also diverse and desirable. A multimodal data-driven design evaluation (DDE) model is developed to guide the generative process by automatically predicting user sentiments for the generated samples based on large-scale user reviews of previous designs. This paper incorporates DDE into the StyleGAN structure, a state-of-the-art GAN model, to enable data-driven generative processes that are innovative and user-centered. The results of experiments conducted on a large dataset of footwear products demonstrate the effectiveness of the proposed DDE-GAN in generating high-quality, diverse, and desirable concepts.

References

1.
Liu
,
Y.-C.
,
Chakrabarti
,
A.
, and
Bligh
,
T.
,
2003
, “
Towards an ‘ideal’ Approach for Concept Generation
,”
Des. Stud.
,
24
(
4
), pp.
341
355
.
2.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2015
, “
How Do Designers Generate New Ideas? Design Heuristics Across Two Disciplines
,”
Des. Sci.
,
1
(
1
), p.
e4
.
3.
Simon
,
H. A.
,
2019
,
The Sciences of the Artificial
,
MIT Press
,
Cambridge, MA
.
4.
Cross
,
N.
,
2021
,
Engineering Design Methods: Strategies for Product Design
,
John Wiley & Sons
,
New York
.
5.
Osborn
,
A. F.
,
1953
,
Applied imagination
,
New York: Charles Scribner's Sons
,
New York
.
6.
Akin
,
Ö.
, and
Lin
,
C.
,
1995
, “
Design Protocol Data and Novel Design Decisions
,”
Des. Stud.
,
16
(
2
), pp.
211
236
.
7.
Brophy
,
D. R.
,
2001
, “
Comparing the Attributes, Activities, and Performance of Divergent, Convergent, and Combination Thinkers
,”
Creativity Res. J.
,
13
(
3–4
), pp.
439
455
.
8.
Atman
,
C. J.
,
Chimka
,
J. R.
,
Bursic
,
K. M.
, and
Nachtmann
,
H. L.
,
1999
, “
A Comparison of Freshman and Senior Engineering Design Processes
,”
Des. Stud.
,
20
(
2
), pp.
131
152
.
9.
Christiaans
,
H.
, and
Dorst
,
K. H.
,
1992
, “
Cognitive Models in Industrial Design Engineering: A Protocol Study
,”
Des. Theory Methodol.
,
42
(
1
), pp.
131
140
.
10.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
11.
Purcell
,
A. T.
, and
Gero
,
J. S.
,
1996
, “
Design and Other Types of Fixation
,”
Des. Stud.
,
17
(
4
), pp.
363
383
.
12.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
,
2013
, “
Design Fixation and Its Mitigation: A Study on the Role of Expertise
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051008
.
13.
Beitz
,
W.
,
Pahl
,
G.
, and
Grote
,
K.
,
1996
, “
Engineering Design: A Systematic Approach
,”
MRS Bull.
,
71
(
1
), pp.
1
617
.
14.
Kirton
,
M. J.
,
2004
,
Adaption-Innovation: In the Context of Diversity and Change
,
Routledge
,
Abingdon, Oxfordshire
.
15.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2011
, “
Assessing Design Creativity
,”
Des. Stud.
,
32
(
4
), pp.
348
383
.
16.
Crilly
,
N.
,
2019
, “
Creativity and Fixation in the Real World: A Literature Review of Case Study Research
,”
Des. Stud.
,
64
(
1
), pp.
154
168
.
17.
Buhl
,
A.
,
Schmidt-Keilich
,
M.
,
Muster
,
V.
,
Blazejewski
,
S.
,
Schrader
,
U.
,
Harrach
,
C.
,
Schäfer
,
M.
, and
Süßbauer
,
E.
,
2019
, “
Design Thinking for Sustainability: Why and How Design Thinking Can Foster Sustainability-Oriented Innovation Development
,”
J. Cleaner Prod.
,
231
(
1
), pp.
1248
1257
.
18.
Cash
,
P.
, and
Štorga
,
M.
,
2015
, “
Multifaceted Assessment of Ideation: Using Networks to Link Ideation and Design Activity
,”
J. Eng. Des.
,
26
(
10–12
), pp.
391
415
.
19.
Dorst
,
K.
, and
Cross
,
N.
,
2001
, “
Creativity in the Design Process: Co-Evolution of Problem–Solution
,”
Des. Stud.
,
22
(
5
), pp.
425
437
.
20.
Sosa
,
R.
,
2019
, “
Accretion Theory of Ideation: Evaluation Regimes for Ideation Stages
,”
Des. Sci.
,
5
(
1
), p.
e23
.
21.
Gonçalves
,
M.
, and
Cash
,
P.
,
2021
, “
The Life Cycle of Creative Ideas: Towards a Dual-Process Theory of Ideation
,”
Des. Stud.
,
72
(
1
), p.
100988
.
22.
Renner
,
G.
, and
Ekárt
,
A.
,
2003
, “
Genetic Algorithms in Computer Aided Design
,”
Comput.-Aided Des.
,
35
(
8
), pp.
709
726
.
23.
Yuan
,
C.
,
Marion
,
T.
, and
Moghaddam
,
M.
,
2022
, “
Leveraging End-User Data for Enhanced Design Concept Evaluation: A Multimodal Deep Regression Model
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021403
.
24.
Vasconcelos
,
L. A.
,
Cardoso
,
C. C.
,
Sääksjärvi
,
M.
,
Chen
,
C. -C.
, and
Crilly
,
N.
,
2017
, “
Inspiration and Fixation: The Influences of Example Designs and System Properties in Idea Generation
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031101
.
25.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Networks
,”
Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014)
,
Montreal, Canada
,
Dec. 8–13
, pp.
2672
2680
.
26.
Teng
,
L.
,
Fu
,
Z.
, and
Yao
,
Y.
,
2020
, “
Interactive Translation in Echocardiography Training System With Enhanced Cycle-GAN
,”
IEEE Access
,
8
(
1
), pp.
106147
106156
.
27.
Karras
,
T.
,
Laine
,
S.
, and
Aila
,
T.
,
2019
, “
A Style-Based Generator Architecture for Generative Adversarial Networks
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
4401
4410
.
28.
Chen
,
L.
,
Maddox
,
R. K.
,
Duan
,
Z.
, and
Xu
,
C.
,
2019
, “
Hierarchical Cross-Modal Talking Face Generation With Dynamic Pixel-wise Loss
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
7832
7841
.
29.
Reed
,
S.
,
Akata
,
Z.
,
Yan
,
X.
,
Logeswaran
,
L.
,
Schiele
,
B.
, and
Lee
,
H.
,
2016
, “
Generative Adversarial Text to Image Synthesis
,”
Proceedings of the 33rd International Conference on International Conference on Machine Learning
,
New York, NY
,
June 19– 24
.
30.
Kim
,
T.
,
Cha
,
M.
,
Kim
,
H.
,
Lee
,
J. K.
, and
Kim
,
J.
,
2017
, “
Learning to Discover Cross-Domain Relations With Generative Adversarial Networks
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
1857
1865
.
31.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
32.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PaDGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
33.
Xu
,
K.
,
Zhang
,
G.
,
Liu
,
S.
,
Fan
,
Q.
,
Sun
,
M.
,
Chen
,
H.
,
Chen
,
P.-Y.
,
Wang
,
Y.
, and
Lin
,
X.
,
2020
, “
Adversarial T-shirt! Evading Person Detectors in a Physical World
,”
European Conference on Computer Vision
,
Glasgow, UK
,
Aug. 23–28
, Springer, pp.
665
681
.
34.
Cheong
,
H.
, and
Shu
,
L.
,
2014
, “
Retrieving Causally Related Functions From Natural-Language Text for Biomimetic Design
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081008
.
35.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2022
, “
GANTL: Toward Practical and Real-Time Topology Optimization With Conditional Generative Adversarial Networks and Transfer Learning
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021711
.
36.
Lee
,
M.
,
Park
,
Y.
,
Jo
,
H.
,
Kim
,
K.
,
Lee
,
S.
, and
Lee
,
I.
,
2022
, “
Deep Generative Tread Pattern Design Framework for Efficient Conceptual Design
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071703
.
37.
Kazemi
,
H.
,
Seepersad
,
C. C.
, and
Alicia Kim
,
H.
,
2022
, “
Multiphysics Design Optimization Via Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
144
(
12
), p.
121702
.
38.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
39.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
40.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
41.
Yuan
,
C.
, and
Moghaddam
,
M.
,
2020
, “
Attribute-Aware Generative Design With Generative Adversarial Networks
,”
IEEE Access
,
8
(
1
), pp.
190710
190721
.
42.
Liang
,
X.
,
Lin
,
L.
,
Yang
,
W.
,
Luo
,
P.
,
Huang
,
J.
, and
Yan
,
S.
,
2016
, “
Clothes Co-Parsing Via Joint Image Segmentation and Labeling With Application to Clothing Retrieval
,”
IEEE Trans. Multimedia
,
18
(
6
), pp.
1175
1186
.
43.
Heyrani Nobari
,
A.
,
Rashad
,
M. F.
, and
Ahmed
,
F.
,
2021
, “
Creativegan: Editing Generative Adversarial Networks for Creative Design Synthesis
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, online
,
Aug. 17–20
, Vol. 85383, American Society of Mechanical Engineers, Paper No. V03AT03A002.
44.
Elgammal
,
A.
,
Liu
,
B.
,
Elhoseiny
,
M.
, and
Mazzone
,
M.
,
2017
, “
CAN: Creative Adversarial Networks Generating ‘Art’ by Learning About Styles and Deviating From Style Norms
,”
Eighth International Conference on Computational Creativity, ICCC 2017
,
Atlanta, GA
,
June 19–23
.
45.
Nobari
,
A. H.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2022
, “
Range-Constrained Generative Adversarial Network: Design Synthesis Under Constraints Using Conditional Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021708
.
46.
Huang
,
X.
,
Liu
,
M.-Y.
,
Belongie
,
S.
, and
Kautz
,
J.
,
2018
, “
Multimodal Unsupervised Image-to-Image Translation
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
172
189
.
47.
Choi
,
Y.
,
Choi
,
M.
,
Kim
,
M.
,
Ha
,
J.-W.
,
Kim
,
S.
, and
Choo
,
J.
,
2018
, “
Stargan: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
8789
8797
.
48.
Chen
,
Q.
,
Wang
,
J.
,
Pope
,
P.
,
Chen
,
W.
, and
Fuge
,
M.
,
2022
, “
Inverse Design of Two-Dimensional Airfoils Using Conditional Generative Models and Surrogate Log-Likelihoods
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021712
.
49.
Dingdong
,
Yang
, and
Honglak
,
Lee
,
2018
, “
Diversity Augmented Conditional Generative Adversarial Network for Enhanced Multimodal Image-to-Image Translation
,”
International Conference on Learning Representations
,
Vancouver, Canada
,
Apr. 30–May 3
.
50.
Lin
,
J.
,
Chen
,
Z.
,
Xia
,
Y.
,
Liu
,
S.
,
Qin
,
T.
, and
Luo
,
J.
,
2019
, “
Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
4
), pp.
1254
1266
.
51.
Che
,
T.
,
Li
,
Y.
,
Jacob
,
A. P.
,
Bengio
,
Y.
, and
Li
,
W.
,
2016
, “
Mode regularized generative adversarial networks
,”
Fifth International Conference on Learning Representations
,
San Juan, Puerto Rico
,
May 2–4
,
p. 1
.
52.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Mo-Padgan: Reparameterizing Engineering Designs for Augmented Multi-Objective Optimization
,”
Appl. Soft Comput.
,
113
(
1
), p.
107909
.
53.
Wolfram
,
S.
,
2002
,
A New Kind of Science
, Vol.
5
,
Wolfram Media Champaign
,
Champaign, IL
.
54.
Lindenmayer
,
A.
,
1968
, “
Mathematical Models for Cellular Interactions in Development I. Filaments With One-Sided Inputs
,”
J. Theor. Biol.
,
18
(
3
), pp.
280
299
.
55.
Stiny
,
G.
,
1980
, “
Introduction to Shape and Shape Grammars
,”
Environ. Plann. B: Plann. Des.
,
7
(
3
), pp.
343
351
.
56.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
57.
Kennedy
,
J.
,
2006
,
Handbook of Nature-Inspired and Innovative Computing
,
Springer
,
New York, NY
, pp.
187
219
.
58.
Patel
,
N. M.
,
Kang
,
B. -S.
,
Renaud
,
J. E.
, and
Tovar
,
A.
,
2009
, “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061013
.
59.
Hornby
,
G. S.
,
Lipson
,
H.
, and
Pollack
,
J. B.
,
2001
, “
Evolution of Generative Design Systems for Modular Physical Robots
,”
IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
,
May 21–26
.
60.
Krish
,
S.
,
2011
, “
A Practical Generative Design Method
,”
Comput.-Aided Des.
,
43
(
1
), pp.
88
100
.
61.
Caldas
,
L. G.
, and
Norford
,
L. K.
,
2002
, “
A Design Optimization Tool Based on a Genetic Algorithm
,”
Autom. Constr.
,
11
(
2
), pp.
173
184
.
62.
Lobos
,
A.
,
2018
, “
Finding Balance in Generative Product Design
,”
Proceedings of NordDesign 2018
,
Linköping, Sweden
,
Aug. 14–17
.
63.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, Vol. 50107, American Society of Mechanical Engineers, Paper No. V02AT03A013.
64.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design Via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
65.
Valencia-Rosado
,
L. O.
,
Guzman-Zavaleta
,
Z. J.
, and
Starostenko
,
O.
,
2022
, “
A Modular Generative Approach for Realistic River Deltas: When L-systems and Cgans Meet
,”
IEEE Access
,
10
(
1
), pp.
5753
5767
.
66.
Huo
,
Q.
,
Tang
,
G.
, and
Zhang
,
F.
,
2019
, “
Particle Swarm Optimization for Great Enhancement in Semi-supervised Retinal Vessel Segmentation With Generative Adversarial Networks
,”
Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting
,
Shenzhen, China
,
Oct. 13
, Springer, pp.
112
120
.
67.
Iklima
,
Z.
,
Adriansyah
,
A.
, and
Hitimana
,
S.
,
2021
, “
Self-Collision Avoidance of Arm Robot Using Generative Adversarial Network and Particles Swarm Optimization (GAN-PSO)
,”
Sinergi
,
25
(
2
), pp.
141
152
.
68.
Chen
,
W.
, and
Ahmed
,
F.
,
2020
, “
PADGAN: A Generative Adversarial Network for Performance Augmented Diverse Designs
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 84003, American Society of Mechanical Engineers, Paper No. V11AT11A010.
69.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
70.
Karras
,
T.
,
Laine
,
S.
,
Aittala
,
M.
,
Hellsten
,
J.
,
Lehtinen
,
J.
, and
Aila
,
T.
,
2020
, “
Analyzing and Improving the Image Quality of Stylegan
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
,
June 13–19
, pp.
8110
8119
.
71.
Gulrajani
,
I.
,
Ahmed
,
F.
,
Arjovsky
,
M.
,
Dumoulin
,
V.
, and
Courville
,
A. C.
,
2017
, “
Improved Training of Wasserstein GANs
,”
Adv. Neural Inf. Process. Syst.
,
30
(
1
), pp.
5769
5779
. https://dl.acm.org/doi/10.5555/3295222.3295327
72.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Generative Adversarial Networks
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
214
223
.
73.
Villani
,
C.
,
2016
,
Optimal Transport: Old and New
,
Grundlehren der mathematischen Wissenschaften
,
Springer, Berlin/Heidelberg
.
74.
Han
,
Y.
, and
Moghaddam
,
M.
,
2021
, “
Analysis of Sentiment Expressions for User-Centered Design
,”
Expert Syst. Appl.
,
171
(
1
), p.
114604
.
75.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
76.
Kenton
,
J. D. M. -W. C.
, and
Toutanova
,
L. K.
,
2019
, “
Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of NAACL-HLT
,
Minneapolis, MN
,
June 2–7
, pp.
4171
4186
.
77.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
,
Antiga
,
L.
,
Desmaison
,
A.
,
Köpf
,
A.
,
Yang
,
E.
,
DeVito
,
Z.
,
Raison
,
M.
,
Tejani
,
A.
,
Chilamkurthy
,
S.
,
Steiner
,
B.
,
Fang
,
L.
,
Bai
,
J.
, and
Chintala
,
S.
,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
Advances in Neural Information Processing Systems (NeurIPS 2019)
,
Vancouver, Canada
,
Dec. 8–14
, pp.
8026
8037
.
78.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference for Learning Representations
,
San Diego, CA
,
May 7–9
,
p. 13
.
79.
Heusel
,
M.
,
Ramsauer
,
H.
,
Unterthiner
,
T.
,
Nessler
,
B.
, and
Hochreiter
,
S.
,
2017
, “
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
,”
Annual Conference on Neural Information Processing Systems 2017
,
Long Beach, CA
,
Dec. 4–9
.
80.
Gretton
,
A.
,
Borgwardt
,
K. M.
,
Rasch
,
M. J.
,
Schölkopf
,
B.
, and
Smola
,
A.
,
2012
, “
A Kernel Two-Sample Test
,”
J. Mach. Learn. Res.
,
13
(
1
), pp.
723
773
. https://dl.acm.org/doi/10.5555/2188385.2188410
81.
Wilson
,
A. G.
,
Hu
,
Z.
,
Salakhutdinov
,
R.
, and
Xing
,
E. P.
,
2016
, “
Deep Kernel Learning
,”
Artificial Intelligence and Statistics
,
Cadiz, Spain
,
May 9–11
, PMLR, pp.
370
378
.
82.
Ravuri
,
S.
,
Mohamed
,
S.
,
Rosca
,
M.
, and
Vinyals
,
O.
,
2018
, “
Learning Implicit Generative Models With the Method of Learned Moments
,”
International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
, PMLR, pp.
4314
4323
.
83.
Raviselvam
,
S.
,
Hölttä-Otto
,
K.
, and
Wood
,
K. L.
,
2016
, “
User Extreme Conditions to Enhance Designer Empathy and Creativity: Applications Using Visual Impairment
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, Vol. 50190, American Society of Mechanical Engineers, Paper No. V007T06A005.
84.
Chong
,
L.
,
Raina
,
A.
,
Goucher-Lambert
,
K.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2023
, “
The Evolution and Impact of Human Confidence in Artificial Intelligence and in Themselves on AI-assisted Decision-Making in Design
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031401
.
85.
Nelson
,
B. A.
,
Wilson
,
J. O.
,
Rosen
,
D.
, and
Yen
,
J.
,
2009
, “
Refined Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
30
(
6
), pp.
737
743
.
You do not currently have access to this content.