Abstract

Here, the morphology of a legged robot refers to the standing/crawling pose of the robot and the forward/backward orientation of the knee, which are related to the configurations of all leg mechanisms. The standing/crawling pose of the robot determines the body height and the leg supporting region size, which are related to the obstacle-traversing and arch-traversing capability. The proper knee orientation can reduce the leg–ground interference risk and help select a good foothold. Therefore, the terrain adaptability can be enhanced if the morphology of the legged robot is changeable. Motivated by this, a hexapod robot capable of morphology conversion is designed in this study. For the leg mechanism, a double-parallelogram transmission mechanism is used to change the forward/backward orientation of the knee. The hexapod robot can transform between the crawling pose and the standing pose and can also transform among four standing morphologies (i.e., the knee–elbow, knee–knee, elbow–knee, and elbow–elbow morphologies). The appropriate robot morphology can be determined according to the terrain type. The lateral reachable body workspaces are derived analytically for different morphologies, which is useful for motion planning. Simulations and experiments are used to verify the design and analysis of the hexapod robot.

References

1.
Lee
,
J.
,
Hwangbo
,
J.
,
Wellhausen
,
L.
,
Koltun
,
V.
, and
Hutter
,
M.
,
2020
, “
Learning Quadrupedal Locomotion Over Challenging Terrain
,”
Sci. Rob.
,
5
(
47
), p.
eabc5986
.
2.
Chen
,
J. W.
,
Xu
,
K.
, and
Ding
,
X. L.
,
2022
, “
Adaptive Gait Planning for Quadruped Robot Based on Center of Inertia Over Rough Terrain
,”
Biomim. Intell. Rob.
,
2
(
1
), p.
100031
.
3.
Li
,
H. Y.
,
Qi
,
C. K.
,
Chen
,
X. B.
,
Mao
,
L. H.
,
Zhao
,
Y.
, and
Gao
,
F.
,
2021
, “
Stair Climbing Capability-Based Dimensional Synthesis for the Multi-Legged Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Xi’an, China
,
May 30–June 5
, pp.
2950
2956
.
4.
Gao
,
Z.
,
Jia
,
G.
,
Xie
,
H.
,
Huang
,
Q.
,
Fukuda
,
T.
, and
Shi
,
Q.
,
2022
, “
Learning Rat-Like Behavior for a Small-Scale Biomimetic Robot
,”
Engineering
,
17
, pp.
232
243
.
5.
Chen
,
Z.
,
Xi
,
Q.
,
Gao
,
F.
, and
Zhao
,
Y.
,
2022
, “
Fault-Tolerant Gait Design for Quadruped Robots With One Locked Leg Using the GF Set Theory
,”
Mech. Mach. Theory
,
178
, p.
105069
.
6.
Chen
,
X.
,
Gao
,
F.
,
Qi
,
C.
,
Tian
,
X.
, and
Wei
,
L.
,
2015
, “
Kinematic Analysis and Motion Planning of a Quadruped Robot With Partially Faulty Actuators
,”
Mech. Mach. Theory
,
94
, pp.
64
79
.
7.
Liu
,
Y.
,
Fan
,
X.
,
Ding
,
L.
,
Wang
,
J.
,
Liu
,
T.
, and
Gao
,
H.
,
2020
, “
Fault-Tolerant Tripod Gait Planning and Verification of a Hexapod Robot
,”
Appl. Sci.
,
10
(
8
), p.
2959
.
8.
Xu
,
P.
,
Ding
,
L.
,
Wang
,
Z. K.
,
Gao
,
H. B.
,
Zhou
,
R. Y.
,
Gong
,
Z. P.
, and
Liu
,
G. J.
,
2022
, “
Contact Sequence Planning for Hexapod Robots in Sparse Foothold Environment Based on Monte-Carlo Tree
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
826
833
.
9.
Peng
,
S. J.
,
Ding
,
X. L.
,
Yang
,
F.
, and
Xu
,
K.
,
2017
, “
Motion Planning and Implementation for the Self-Recovery of an Overturned Multi-Legged Robot
,”
Robotica
,
35
(
5
), pp.
1107
1120
.
10.
Tang
,
Z.
,
Wang
,
K.
,
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2022
, “
Origaker: A Novel Multi-Mimicry Quadruped Robot Based on a Metamorphic Mechanism
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060907
.
11.
Wang
,
S. J.
,
Wang
,
K.
,
Zhang
,
C. S.
, and
Dai
,
J. S.
,
2022
, “
Kinetostatic Backflip Strategy for Self-Recovery of Quadruped Robots With the Selected Rotation Axis
,”
Robotica
,
40
(
6
), pp.
1713
1731
.
12.
Baines
,
R.
,
Patiballa
,
S. K.
,
Booth
,
J.
,
Ramirez
,
L.
,
Sipple
,
T.
,
Garcia
,
A.
,
Fish
,
F.
, and
Kramer-Bottiglio
,
R.
,
2022
, “
Multi-Environment Robotic Transitions Through Adaptive Morphogenesis
,”
Nature
,
610
(
7931
), pp.
283
289
.
13.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
AMSE J. Mech. Des.
,
121
(
3
), pp.
375
382
.
14.
Arm
,
P.
,
Zenkl
,
R.
,
Barton
,
P.
,
Beglinger
,
L.
,
Dietsche
,
A.
,
Ferrazzini
,
L.
,
Hampp
,
E.
, et al
,
2019
, “
SpaceBok: A Dynamic Legged Robot for Space Exploration
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
6288
6294
.
15.
Chen
,
T.
,
Li
,
Y. B.
,
Rong
,
X. W.
,
Zhang
,
G. T.
,
Chai
,
H.
,
Bi
,
J.
, and
Wang
,
Q. S.
,
2021
, “
Design and Control of a Novel Leg-Arm Multiplexing Mobile Operational Hexapod Robot
,”
IEEE Rob. Autom. Lett.
,
7
(
1
), pp.
382
389
.
16.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Hyun
,
D. J.
,
Lee
,
J.
,
Otten
,
D. M.
,
Lang
,
J. H.
, and
Kim
,
S.
,
2015
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot
,”
IEEE-ASME Trans. Mechatron.
,
20
(
3
), pp.
1117
1129
.
17.
Ye
,
S. S.
,
Luo
,
J. W.
,
Sun
,
C. M.
,
Jin
,
B. C.
,
Su
,
J. T.
, and
Zhang
,
A. D.
,
2021
, “
Design of a Large-Scale Electrically-Actuated Quadruped Robot and Locomotion Control for the Narrow Passage
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, pp.
7424
7431
.
18.
Yang
,
C. Y.
,
Yuan
,
K.
,
Zhu
,
Q. G.
,
Yu
,
W. M.
, and
Li
,
Z. B.
,
2020
, “
Multi-Expert Learning of Adaptive Legged Locomotion
,”
Sci. Rob.
,
5
(
49
), p.
eabb2174
.
19.
Wang
,
Z. L.
,
Gao
,
F.
,
Zhao
,
Y.
,
Yin
,
Y. P.
, and
Wang
,
L. Y.
,
2023
, “
Improved A* Algorithm and Model Predictive Control-Based Path Planning and Tracking Framework for Hexapod Robots
,”
Ind. Rob.
,
50
(
1
), pp.
135
144
.
20.
Yang
,
K.
,
Zhou
,
L. L.
,
Rong
,
X. W.
, and
Li
,
Y. B.
,
2018
, “
Onboard Hydraulic System Controller Design for Quadruped Robot Driven by Gasoline Engine
,”
Mechatronics
,
52
, pp.
36
48
.
21.
Li
,
H.
,
Qi
,
C.
,
Mao
,
L.
,
Zhao
,
Y.
,
Chen
,
X.
, and
Gao
,
F.
,
2021
, “
Staircase-Climbing Capability-Based Dimension Design of a Hexapod Robot
,”
Mech. Mach. Theory
,
164
, p.
104400
.
22.
Zhao
,
Y.
,
Gao
,
Y.
,
Sun
,
Q.
,
Tian
,
Y.
,
Mao
,
L.
, and
Gao
,
F.
,
2021
, “
A Real-Time Low-Computation Cost Human-Following Framework in Outdoor Environment for Legged Robots
,”
Rob. Auton. Syst.
,
146
, p.
103899
.
23.
Mastalli
,
C.
,
Havoutis
,
I.
,
Focchi
,
M.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2020
, “
Motion Planning for Quadrupedal Locomotion: Coupled Planning, Terrain Mapping, and Whole-Body Control
,”
IEEE Trans. Rob.
,
36
(
6
), pp.
1635
1648
.
24.
Semini
,
C.
,
Barasuol
,
V.
,
Goldsmith
,
J.
,
Frigerio
,
M.
,
Focchi
,
M.
,
Gao
,
Y. F.
, and
Caldwell
,
D. G.
,
2017
, “
Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max
,”
IEEE-ASME Trans. Mechatron.
,
22
(
2
), pp.
635
646
.
25.
Zhang
,
S. S.
,
Fan
,
M. Q.
,
Li
,
Y. B.
,
Rong
,
X. W.
, and
Liu
,
M.
,
2019
, “
Generation of a Continuous Free Gait for Quadruped Robot Over Rough Terrains
,”
Adv. Rob.
,
33
(
2
), pp.
74
89
.
26.
Wooden
,
D.
,
Malchano
,
M.
,
Blankespoor
,
K.
,
Howard
,
A.
,
Rizzi
,
A. A.
, and
Raibert
,
M.
,
2010
, “
Autonomous Navigation for BigDog
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–8
, pp.
4736
4741
.
27.
Chai
,
H.
,
Li
,
Y. B.
,
Song
,
R.
,
Zhang
,
G. T.
,
Zhang
,
Q.
,
Liu
,
S.
,
Hou
,
J. M.
, et al
,
2021
, “
A Survey of the Development of Quadruped Robots: Joint Configuration, Dynamic Locomotion Control Method and Mobile Manipulation Approach
,”
Biomim. Intell. Rob.
,
2
(
1
), p.
100029
.
28.
Ye
,
L. Q.
,
Liu
,
H. D.
,
Wang
,
X. Q.
,
Liang
,
B.
, and
Yuan
,
B.
,
2020
, “
Multi-Task Control for a Quadruped Robot With Changeable Leg Configuration
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
, pp.
3944
3950
.
29.
Sun
,
Z. K.
,
Zhu
,
Z. G.
,
Zhang
,
G. T.
,
Li
,
Y. B.
, and
Rong
,
X. W.
,
2021
, “
Design and Control of a Quadruped Robot With Changeable Configuration
,”
Proceedings of the International Conference on Intelligent Robotics and Applications (ICIRA)
,
Yantai, China
,
Oct. 22–25
, pp.
631
641
.
30.
Cordes
,
S.
,
Berns
,
K.
,
Eberl
,
M.
,
Ilg
,
W.
, and
Buhrle
,
P.
,
1997
, “
On the Design of a Four-Legged Walking Machine
,”
Proceedings of the IEEE International Conference on Advanced Robotics (ICAR)
,
Monterey, CA
,
July 7−9
, pp.
65
70
.
31.
Gosselin
,
C. M.
, and
Wang
,
J. G.
,
1997
, “
Singularity Loci of Planar Parallel Manipulators With Revolute Actuators
,”
Rob. Auton. Syst.
,
21
(
4
), pp.
377
398
.
32.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
2245
2252
.
33.
Hutter
,
M.
,
Gehring
,
C.
,
Hopflinger
,
M. A.
,
Blosch
,
M.
, and
Siegwart
,
R.
,
2014
, “
Toward Combining Speed, Efficiency, Versatility, and Robustness in an Autonomous Quadruped
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1427
1440
.
34.
Yu
,
J.
,
Hooks
,
J.
,
Zhang
,
X. G.
,
Ahn
,
M. S.
, and
Hong
,
D.
,
2018
, “
A Proprioceptive, Force-Controlled, Non-Anthropomorphic Biped for Dynamic Locomotion
,”
Proceedings of the IEEE/RAS International Conference on Humanoid Robots (Humanoids)
,
Beijing, China
,
Nov. 6–9
, pp.
489
496
.
35.
Hooks
,
J.
,
Ahn
,
M. S.
,
Yu
,
J. F.
,
Zhang
,
X. G.
,
Zhu
,
T. Y. M.
,
Chae
,
H.
, and
Hong
,
D.
,
2020
, “
ALPHRED: A Multi-Modal Operations Quadruped Robot for Package Delivery Applications
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5409
5416
.
36.
Hutter
,
M.
,
Gehring
,
C.
,
Lauber
,
A.
,
Gunther
,
F.
,
Bellicoso
,
C. D.
,
Tsounis
,
V.
,
Fankhauser
,
P.
, et al
,
2017
, “
ANYmal—Toward Legged Robots for Harsh Environments
,”
Adv. Rob.
,
31
(
17
), pp.
918
931
.
37.
Ye
,
L. Q.
,
Wang
,
Y. Q.
,
Wang
,
X. Q.
,
Liu
,
H. D.
, and
Liang
,
B.
,
2021
, “
Optimized Static Gait for Quadruped Robots Walking on Stairs
,”
Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE)
,
Lyon, France
,
Aug. 23–27
, pp.
921
927
.
38.
Ye
,
L. Q.
,
Liu
,
H. D.
,
Wang
,
X. Q.
,
Liang
,
B.
, and
Yuan
,
B.
,
2022
, “
Design and Control of a Robotic System With Legs, Wheels, and a Reconfigurable Arm
,”
IET Cyber-Syst. Robot.
,
4
(
4
), pp.
313
321
.
39.
Xu
,
K.
,
Ma
,
H.
,
Chen
,
J.
,
Zhang
,
W.
,
Deng
,
H.
, and
Ding
,
X.
,
2018
, “
Design and Analysis of a Metamorphic Quadruped Robot
,”
Proceedings of the International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
, pp.
1
7
.
40.
Agheli
,
M.
, and
Nestinger
,
S. S.
,
2014
, “
Comprehensive Closed-Form Solution for the Reachable Workspace of 2-RPR Planar Parallel Mechanisms
,”
Mech. Mach. Theory
,
74
, pp.
102
116
.
41.
Rastgar
,
H.
,
Naeimi
,
H. R.
, and
Agheli
,
M.
,
2019
, “
Characterization, Validation, and Stability Analysis of Maximized Reachable Workspace of Radially Symmetric Hexapod Machines
,”
Mech. Mach. Theory
,
137
, pp.
315
335
.
42.
Li
,
H.
,
Qi
,
C.
,
Gao
,
F.
,
Chen
,
X.
,
Zhao
,
Y.
, and
Chen
,
Z.
,
2022
, “
Mechanism Design and Workspace Analysis of a Hexapod Robot
,”
Mech. Mach. Theory
,
174
, p.
104917
.
43.
Zhao
,
Y.
,
Chai
,
X.
,
Gao
,
F.
, and
Qi
,
C. K.
,
2018
, “
Obstacle Avoidance and Motion Planning Scheme for a Hexapod Robot Octopus-III
,”
Rob. Auton. Syst.
,
103
, pp.
199
212
.
44.
Chen
,
Z.
,
Liu
,
J.
, and
Gao
,
F.
,
2022
, “
Real-Time Gait Planning Method for Six-Legged Robots to Optimize the Performances of Terrain Adaptability and Walking Speed
,”
Mech. Mach. Theory
,
168
, p.
104545
.
45.
Pan
,
Y.
,
Gao
,
F.
, and
Du
,
H.
,
2016
, “
Fault Tolerance Criteria and Walking Capability Analysis of a Novel Parallel-Parallel Hexapod Walking Robot
,”
Robotica
,
34
(
3
), pp.
619
633
.
46.
Liu
,
H. T.
,
Huang
,
T.
,
Kecskeméthy
,
A.
, and
Chetwynd
,
D. G.
,
2014
, “
A Generalized Approach for Computing the Transmission Index of Parallel Mechanisms
,”
Mech. Mach. Theory
,
74
, pp.
245
256
.
47.
Qin
,
R. P.
,
Xu
,
K.
,
Chen
,
J. W.
,
Han
,
L. L.
, and
Ding
,
X. L.
,
2021
, “
Design and Motion Planning of Wheel-Legged Hexapod Robot for Planetary Exploration
,”
Acta Aeronaut. Astronaut. Sin.
,
42
(
1
), p.
524244
(in Chinese).
48.
Mao
,
L.
,
Gao
,
F.
,
Tian
,
Y.
, and
Zhao
,
Y.
,
2020
, “
Novel Method for Preventing Shin-Collisions in Six-Legged Robots by Utilising a Robot-Terrain Interference Model
,”
Mech. Mach. Theory
,
151
, p.
103897
.
You do not currently have access to this content.