Abstract

There are numerous design possibilities for vibration–suppression systems considering components from multiple domains (e.g., mechanical, hydraulic, pneumatic, electrical). Traditional vibration absorber design approach could only explore limited possibilities, of which the performance is away from optimal. Since the 2000s, network synthesis-based approach has been applied. It allows identification of optimal absorber properties represented by networks consisting of modeling elements (stiffness, damping, inertance), providing significant theoretical performance improvements. However, such improvements have not yet been realized in industry. This is because the following questions have not been answered: (1) What are the network-represented properties of the conventional absorber? (2) How can the optimal network-represented properties be realized considering multidomain physical components? This article provides a method for answering these questions by proposing a novel multidomain synthesis technique, allowing bidirectional transformation between networks and multidomain components. Building on this technique, a vibration–absorber design methodology is proposed, which can construct physical realizations of optimal absorbers considering multidomain components. Another contribution of this work is to propose a novel component, providing a hydraulic realization of compliance ‘embedded’ in a hydraulic network. This methodology is demonstrated using an automotive case study, where the constructed optimal hydraulic suspension provides 23% ride comfort enhancement over the conventional one.

References

1.
Duym
,
S. W.
,
2000
, “
Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics
,”
Vehicle Syst. Dyn.
,
33
(
4
), pp.
261
285
.
2.
Ramos
,
J.
,
Rivas
,
A.
,
Biera
,
J.
,
Sacramento
,
G.
, and
Sala
,
J.
,
2005
, “
Development of a Thermal Model for Automotive Twin-Tube Shock Absorbers
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1836
1853
.
3.
Esmailzadeh
,
E.
,
1978
, “
Optimization of Pneumatic Vibration Isolation System for Vehicle Suspension
,”
ASME J. Mech. Des.
,
100
(
3
), pp.
500
506
.
4.
Evans
,
J.
,
2011
, “
Application of the Hall Hydraulic Radial Arm Bush to a 200 km/h Inter-City Coach
,”
International Symposium on Dynamics of Vehicle on Road and Tracks, IAVSD
,
Manchester, UK
,
Aug. 14–19
.
5.
Barszcz
,
B.
,
Dreyer
,
J. T.
, and
Singh
,
R.
,
2012
, “
Experimental Study of Hydraulic Engine Mounts Using Multiple Inertia Tracks and Orifices: Narrow and Broad Band Tuning Concepts
,”
J. Sound. Vib.
,
331
(
24
), pp.
5209
5223
.
6.
Chai
,
T.
,
Dreyer
,
J. T.
, and
Singh
,
R.
,
2014
, “
Time Domain Responses of Hydraulic Bushing With Two Flow Passages
,”
J. Sound. Vib.
,
333
(
3
), pp.
693
710
.
7.
Rezaei
,
M.
,
Talebitooti
,
R.
, and
Liao
,
W.-H.
,
2021
, “
Exploiting Bi-stable Magneto-Piezoelastic Absorber for Simultaneous Energy Harvesting and Vibration Mitigation
,”
Int. J. Mech. Sci.
,
207
, p.
106618
.
8.
Yuan
,
H.
,
Li
,
Y.
,
Jiang
,
J. Z.
,
Al Sakka
,
M.
,
Dhaens
,
M.
,
Burrow
,
S.
,
Gonzalez-Buelga
,
A.
,
Clare
,
L.
, and
Mellor
,
P.
,
2022
, “
A Design Methodology for Passive Mechatronic Vibration Absorbers
,”
Mech. Mach. Theory.
,
167
, p.
104523
.
9.
Yin
,
Y.
,
Rakheja
,
S.
, and
Boileau
,
P.-E.
,
2019
, “
Multi-performance Analyses and Design Optimisation of Hydro-Pneumatic Suspension System for an Articulated Frame-Steered Vehicle
,”
Vehicle Syst. Dyn.
,
57
(
1
), pp.
108
133
.
10.
Multimatic
, “
Spool-Valve Damper
,” https://www.multimatic.com/manufacturing/suspension/damping-technology, Accessed July 24, 2023.
11.
12.
Bott
,
R.
, and
Duffin
,
R.
,
1949
, “
Impedance Synthesis Without Use of Transformers
,”
J. Appl. Phys.
,
20
(
8
), pp.
816
816
.
13.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE. Trans. Automat. Contr.
,
47
(
10
), pp.
1648
1662
.
14.
Jiang
,
J. Z.
, and
Smith
,
M. C.
,
2010
, “
Regular Positive-Real Functions and Five-Element Network Synthesis for Electrical and Mechanical Networks
,”
IEEE. Trans. Automat. Contr.
,
56
(
6
), pp.
1275
1290
.
15.
Zhang
,
S. Y.
,
Jiang
,
J. Z.
, and
Neild
,
S. A.
,
2017
, “
Passive Vibration Control: A Structure–Immittance Approach
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2201
), p.
20170011
.
16.
Lewis
,
T.
,
Jiang
,
J.
,
Neild
,
S.
,
Gong
,
C.
, and
Iwnicki
,
S.
,
2020
, “
Using an Inerter-Based Suspension to Improve Both Passenger Comfort and Track Wear in Railway Vehicles
,”
Vehicle Syst. Dyn.
,
58
(
3
), pp.
472
493
.
17.
Lewis
,
T.
,
Li
,
Y.
,
Tucker
,
G.
,
Jiang
,
J.
,
Zhao
,
Y.
,
Neild
,
S.
,
Smith
,
M.
,
Goodall
,
R.
, and
Dinmore
,
N.
,
2021
, “
Improving the Track Friendliness of a Four-axle Railway Vehicle Using an Inertance-Integrated Lateral Primary Suspension
,”
Vehicle Syst. Dyn.
,
59
(
1
), pp.
115
134
.
18.
Zhu
,
M.
,
Zhang
,
S. Y.
,
Jiang
,
J. Z.
,
Macdonald
,
J.
,
Neild
,
S.
,
Antunes
,
P.
,
Pombo
,
J.
,
Cullingford
,
S.
,
Askill
,
M.
, and
Fielder
,
S.
,
2021
, “
Enhancing Pantograph-Xatenary Dynamic Performance Using an Inertance-Integrated Damping System
,”
Vehicle Syst. Dyn.
,
60
(
6
), pp.
1
24
.
19.
Li
,
Y.
,
Jiang
,
J. Z.
,
Neild
,
S. A.
, and
Wang
,
H.
,
2017
, “
Optimal Inerter-Based Shock–Strut Configurations for Landing-Gear Touchdown Performance
,”
J. Aircr.
,
54
(
5
), pp.
1901
1909
.
20.
Li
,
Y.-Y.
,
Park
,
S.
,
Jiang
,
J. Z.
,
Lackner
,
M.
,
Neild
,
S.
, and
Ward
,
I.
,
2020
, “
Vibration Suppression for Monopile and Spar-Buoy Offshore Wind Turbines Using the Structure-Immittance Approach
,”
Wind Energy
,
23
(
10
), pp.
1966
1985
.
21.
Luo
,
J.
,
Macdonald
,
J. H.
, and
Jiang
,
J. Z.
,
2019
, “
Identification of Optimum Cable Vibration Absorbers Using Fixed-Sized-Inerter Layouts
,”
Mech. Mach. Theory.
,
140
, pp.
292
304
.
22.
Zhang
,
S. Y.
,
Sheng
,
X.
,
Jiang
,
J. Z.
,
Zhou
,
H.
,
Ren
,
W.-X.
, and
Zhang
,
Z.-H.
,
2021
, “
Vibration Suppression of Bridges Under Moving Loads Using the Structure-Immittance Approach
,”
Int. J. Mech. Sci.
,
211
, p.
106792
.
23.
He
,
H.
,
Li
,
Y.
,
Jiang
,
J. Z.
,
Burrow
,
S.
,
Neild
,
S.
, and
Conn
,
A.
,
2021
, “
Using an Inerter to Enhance an Active-Passive-Combined Vehicle Suspension System
,”
Int. J. Mech. Sci.
,
204
, p.
106535
.
24.
Sobieszczanski-Sobieski
,
J.
,
1988
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization
, Paper No. NASA-TM-101494.
25.
Balling
,
R.
, and
Wilkinson
,
C.
,
1997
, “
Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems
,”
AIAA. J.
,
35
(
1
), pp.
178
186
.
26.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
,
1996
, “
Optimization of Coupled Systems-a Critical Overview of Approaches
,”
AIAA. J.
,
34
(
1
), pp.
6
17
.
27.
Cramer
,
E. J.
,
Dennis
,
Jr.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
28.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA. J.
,
51
(
9
), pp.
2049
2075
.
29.
Shearer
,
J. L.
,
Shearer
,
L.
,
Murphy
,
A. T.
, and
Richardson
,
H. H.
,
1967
,
Introduction to System Dynamics
, Vol.
44
,
Addison-Wesley
,
Reading, MA
.
30.
Schönfeld
,
J. C.
,
1954
, “
Analogy of Hydraulic, Mechanical, Acoustic and Electric Systems
,”
Appl. Sci. Res., Sect. A
,
3
(
1
), pp.
417
450
.
31.
Firestone
,
F. A.
,
1933
, “
A New Analogy Between Mechanical and Electrical Systems
,”
J. Acoust. Soc. Am.
,
4
(
3
), pp.
249
267
.
32.
Inman
,
D. J.
, and
Singh
,
R. C.
,
1994
,
Engineering Vibration
, Vol.
3
,
Prentice Hall
,
Englewood Cliffs, NJ
.
33.
Ewins
,
D. J.
,
2009
,
Modal Testing: Theory, Practice and Application
,
John Wiley & Sons
,
Chichester, UK
.
34.
Wang
,
F.-C.
, and
Chan
,
H.-A.
,
2011
, “
Vehicle Suspensions With a Mechatronic Network Strut
,”
Vehicle Syst. Dyn.
,
49
(
5
), pp.
811
830
.
35.
Liu
,
X.
,
Titurus
,
B.
, and
Jiang
,
J. Z.
,
2019
, “
Generalisable Model Development for Fluid-Inerter Integrated Damping Devices
,”
Mech. Mach. Theory.
,
137
, pp.
1
22
.
36.
Li
,
Y.
,
Jiang
,
J. Z.
, and
Neild
,
S. A.
,
2019
, “
Optimal Fluid Passageway Design Methodology for Hydraulic Engine Mounts Considering Both Low and High Frequency Performances
,”
J. Vib. Control
,
25
(
21–22
), pp.
2749
2757
.
37.
Singh
,
R.
,
Kim
,
G.
, and
Ravindra
,
P.
,
1992
, “
Linear Analysis of Automotive Hydro-Mechanical Mount With Emphasis on Decoupler Characteristics
,”
J. Sound. Vib.
,
158
(
2
), pp.
219
243
.
39.
Matlab/simscape
, https://uk.mathworks.com/products/simscape.html, Accessed July 24, 2023.
40.
Rakheja
,
S.
,
Su
,
H.
, and
Sankar
,
T.
,
1990
, “
Analysis of a Passive Sequential Hydraulic Damper for Vehicle Suspension
,”
Vehicle Syst. Dyn.
,
19
(
5
), pp.
289
312
.
41.
Smith
,
M. C.
, and
Wang
,
F.-C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Vehicle Syst. Dyn.
,
42
(
4
), pp.
235
257
.
42.
Zhang
,
S.
,
Zhu
,
M.
,
Li
,
Y.
,
Jiang
,
J.
,
Ficca
,
R.
,
Czechowicz
,
M.
,
Neilson
,
R.
,
Neild
,
S.
, and
Herrmann
,
G.
,
2019
, “
Ride Comfort Enhancement for Passenger Vehicles Using the Structure-Immittance Approach
,”
Vehicle Syst. Dyn.
,
59
(
4
), pp.
1
22
.
43.
Cao
,
D.
,
Song
,
X.
, and
Ahmadian
,
M.
,
2011
, “
Editors’ Perspectives: Road Vehicle Suspension Design, Dynamics, and Control
,”
Vehicle Syst. Dyn.
,
49
(
1–2
), pp.
3
28
.
44.
Dharankar
,
C. S.
,
Hada
,
M. K.
, and
Chandel
,
S.
,
2017
, “
Numerical Generation of Road Profile Through Spectral Description for Simulation of Vehicle Suspension
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
6
), pp.
1957
1967
.
45.
ISO 2631-1: 1997/Amd 1: 2010
,
2010
, “
Mechanical Vibration and Shock: Evaluation of Human Exposure to Whole-Body Vibration. Part 1, General Requirements. Standard
,”
International Organization for Standardization
,
Geneva, Switzerland
.
46.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2003
, “
Structured H2 Optimization of Vehicle Suspensions Based on Multi-Wheel Models
,”
Vehicle Syst. Dyn.
,
40
(
5
), pp.
351
371
.
47.
Lang
,
H. H.
,
1977
,
A Study of the Characteristics of Automotive Hydraulic Dampers at High Stroking Frequencies
,
University of Michigan
,
Ann Arbor, MI
.
48.
Reybrouck
,
K.
,
1994
, “
A Non Linear Parametric Model of an Automotive Shock Absorber
,”
SAE Transactions
,
103
(
6
), pp.
1170
1177
.
49.
Duym
,
S.
,
Stiens
,
R.
, and
Reybrouck
,
K.
,
1997
, “
Evaluation of Shock Absorber Models
,”
Vehicle Syst. Dyn.
,
27
(
2
), pp.
109
127
.
You do not currently have access to this content.