Abstract

Topology optimization (TO) is used in the initial design phase to optimize certain objective functions under given boundary conditions by finding suitable material distributions in a specified design domain. Currently available methods in the industry work very efficiently to get topologically optimized design concepts under static and dynamic load cases. However, conventional methods do not address the designer’s preferences about the final material layout in the optimized design. In practice, the final design might be required to have a certain degree of local or global structural similarity with an already present good reference design because of economic, manufacturing, and assembly limitations or the desire to re-use parts in different systems. In this article, a heuristic energy scaling method (ESM) for similarity-driven TO under static as well as dynamic loading conditions is presented and thoroughly evaluated. A 2D cantilever beam under static point load is used to show that the proposed method can be coupled with gradient-based and also heuristic, nongradient methods to get designs of varying similarity with respect to a reference design. Further testing of the proposed method for similarity-driven TO on a 2D crash test case and a large-scale 3D hood model of a car body indicates the effectiveness of the method for a wide range of problems in the industry. Finally, the application of similarity-driven TO is further extended to show that ESM also has the potential for sensitivity analysis of performance with respect to the extension of design domain.

References

1.
Bendsøe
,
M.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization. Theory, Methods, and Applications
,
Springer
,
Berlin/Heidelberg, Germany
.
2.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
3.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
4.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multi. Optim.
,
48
(
3
), pp.
437
472
.
5.
Ma
,
Y.
,
Chen
,
X.
, and
Zuo
,
W.
,
2020
, “
Equivalent Static Displacements Method for Contact Force Optimization
,”
Struct. Multi. Optim.
,
62
, pp.
323
336
.
6.
Lu
,
S.
,
Zhang
,
Z.
,
Guo
,
H.
,
Park
,
G.-J.
, and
Zuo
,
W.
,
2021
, “
Nonlinear Dynamic Topology Optimization With Explicit and Smooth Geometric Outline Via Moving Morphable Components Method
,”
Struct. Multi. Optim.
,
64
, pp.
2465
2487
.
7.
Huang
,
X.
,
Xie
,
Y.
, and
Lu
,
G.
,
2007
, “
Topology Optimization of Energy-Absorbing Structures
,”
Int. J. Crashworthiness
,
12
(
6
), pp.
663
675
.
8.
Tovar
,
A.
,
2004
, “
Bone Remodeling as a Hybrid Cellular Automaton Optimization Process
,” Ph.D. thesis,
University of Notre Dame
,
IN
.
9.
Duddeck
,
F.
,
Hunkeler
,
S.
,
Lozano
,
P.
,
Wehrle
,
E.
, and
Zeng
,
D.
,
2016
, “
Topology Optimization for Crashworthiness of Thin-Walled Structures Under Axial Impact Using Hybrid Cellular Automata
,”
Struct. Multi. Optim.
,
54
(
3
), pp.
415
428
.
10.
Aulig
,
N.
, and
Olhofer
,
M.
,
2016
, “
State-Based Representation for Structural Topology Optimization and Application to Crashworthiness
,”
IEEE Congress on Evolutionary Computation (CEC)
,
Vancouver, BC, Canada
,
July 24–29
, IEEE, pp.
1642
1649
.
11.
Bujny
,
M.
,
Aulig
,
N.
,
Olhofer
,
M.
, and
Duddeck
,
F.
,
2018
, “
Identification of Optimal Topologies for Crashworthiness With the Evolutionary Level Set Method
,”
Int. J. Crashworthiness
,
23
(
4
), pp.
395
416
.
12.
Raponi
,
E.
,
Bujny
,
M.
,
Olhofer
,
M.
,
Aulig
,
N.
,
Boria
,
S.
, and
Duddeck
,
F.
,
2019
, “
Kriging-Assisted Topology Optimization of Crash Structures
,”
Comput. Methods Appl. Mech. Eng.
,
348
, pp.
730
752
.
13.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Softw.
,
100
, pp.
161
175
.
14.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
15.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
16.
Zhang
,
W.
,
Chen
,
J.
,
Zhu
,
X.
,
Zhou
,
J.
,
Xue
,
D.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization Via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
17.
Zhang
,
W.
,
Li
,
D.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Minimum Length Scale Control in Structural Topology Optimization Based on the Moving Morphable Components (MMC) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
327
355
.
18.
Zhang
,
W.
,
Zhou
,
J.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Structural Complexity Control in Topology Optimization Via Moving Morphable Component (MMC) Approach
,”
Struct. Multi. Optim.
,
56
, pp.
535
552
.
19.
Bujny
,
M.
,
Olhofer
,
M.
, and
Duddeck
,
F.
,
2017
, “
Optimal Structures for Crash by Additive Manufacturing
,”
1st ECCOMAS Thematic Conf. on Simulation for Additive Manufacturing (Sim-AM)
,
Munich, Germany
,
Oct. 11–13
.
20.
Guo
,
X.
,
Zhou
,
J.
,
Zhang
,
W.
,
Du
,
Z.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
.
21.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
22.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multi. Optim.
,
54
, pp.
1173
1190
.
23.
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081008
.
24.
Bai
,
J.
, and
Zuo
,
W.
,
2020
, “
Hollow Structural Design in Topology Optimization Via Moving Morphable Component Method
,”
Struct. Multi. Optim.
,
61
(
1
), pp.
187
205
.
25.
Yousaf
,
M. S.
,
Bujny
,
M.
,
Zurbrugg
,
N.
,
Detwiler
,
D.
, and
Duddeck
,
F.
,
2020
, “
Similarity Control in Topology Optimization Under Static and Crash Loading Scenarios
,”
Eng. Optim.
,
53
(
9
), pp.
1523
1538
.
26.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
27.
Reehuis
,
E.
,
Olhofer
,
M.
,
Emmerich
,
M.
,
Sendhoff
,
B.
, and
Bäck
,
T.
,
2013
, “
Novelty and Interestingness Measures for Design-Space Exploration
,”
15th Genetic and Evolutionary Computation Conference
,
Amsterdam, The Netherlands
,
July 6–10
.
28.
Krish
,
S.
,
2011
, “
A Practical Generative Design Method
,”
Comput. Aided Des.
,
43
(
1
), pp.
88
100
.
29.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multi. Optim.
,
21
(
2
), pp.
120
127
.
30.
Patel
,
N. M.
,
Kang
,
B. -S.
,
Renaud
,
J. E.
, and
Tovar
,
A.
,
2009
, “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p.
0610131
.
31.
Bandi
,
P.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2013
, “
Design of Crashworthy Structures With Controlled Energy Absorption in the Hybrid Cellular Automaton Framework
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091002
.
32.
Dommaraju
,
N.
,
Bujny
,
M.
,
Menzel
,
S.
,
Olhofer
,
M.
, and
Duddeck
,
F.
,
2023
, “
Evaluation of Geometric Similarity Metrics for Structural Clusters Generated Using Topology Optimization
,”
Appl. Intell.
,
53
, pp.
904
929
.
33.
Lara Lopez
,
G.
,
Peña Pérez Negrón
,
A.
,
De Antonio Jimenez
,
A.
,
Ramirez Rodriguez
,
J.
, and
Imbert Paredes
,
R.
,
2017
, “
Comparative Analysis of Shape Descriptors for 3d Objects
,”
Multimed. Tools Appl.
,
76
, pp.
6993
7040
.
34.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multi. Optim.
,
43
(
1
), pp.
1
16
.
35.
Patel
,
N.
,
2007
, “
Crashworthiness Design Using Topology Optimization
,” Ph.D. thesis,
University of Notre Dame
,
IN
.
36.
Yousaf
,
M. S.
,
2020
, “
Structural Layout Preferences in Topology Optimization for Statics and Crash
,” Master’s thesis,
TU Munich
,
Munich, Germany
.
37.
Dommaraju
,
N.
,
Bujny
,
M.
,
Menzel
,
S.
,
Olhofer
,
M.
, and
Duddeck
,
F.
,
2019
, “
Identifying Topological Prototypes Using Deep Point Cloud Autoencoder Networks
,”
International Conference on Data Mining Workshops (ICDMW)
,
Beijing, China
,
Nov. 8–11
, IEEE, pp.
761
768
.
You do not currently have access to this content.