Abstract

In this paper, a novel four degrees-of-freedom (4DOF) articulated parallel forceps mechanism with a large orientation workspace (±90deg in pitch and yaw, 360deg in roll rotations) is presented for robotic minimally invasive surgery. The proposed 3RSR-1UUP parallel mechanism utilizes a UUP center leg that can convert thrust motion of the 3RSR mechanism into gripping motion. This design eliminates the need for an additional gripper actuator, but also introduces the problem of unintentional gripper opening/closing due to parasitic motion of the 3RSR mechanism. Here, position kinematics of the proposed mechanism, including the workspace, is analyzed in detail, and a solution to the parasitic motion problem is provided. Human-in-the-loop simulations with a haptic interface are also performed to confirm the feasibility of the proposed design.

References

1.
Guthard
,
G.
, and
Salisbury
,
J.
,
2000
, “
The Intuitivetm Telesurgery System: Overview and Application
,”
IEEE ICRA International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 24–28
, Vol. 1, pp.
618
621
.
2.
Tadano
,
K.
, and
Kawashima
,
K.
,
2006
, “
Development of 4-DOFs Forceps With Force Sensing Using Pneumatic Servo System
,”
Proceedings of 2006 IEEE International Conference on Robotics and Automation. ICRA 2006
,
Orlando, FL
,
May 15–19
, IEEE,pp. 2250–2255.
3.
Hamid
,
S. A.
, and
Simaan
,
N.
,
2009
, “
Design and Synthesis of Wire-Actuated Universal-Joint Wrists for Surgical Applications
,”
Proceedings of 2009 IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
1807
1813
.
4.
Seibold
,
U.
,
Kubler
,
B.
, and
Hirzinger
,
G.
,
2005
, “
Prototype of Instrument for Minimally Invasive Surgery With 6-Axis Force Sensing Capability
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
496
501
.
5.
Kalan
,
S.
,
Chauhan
,
S.
,
Coelho
,
R. F.
,
Orvieto
,
M. A.
,
Camacho
,
I. R.
,
Palmer
,
K. J.
, and
Patel
,
V. R.
,
2010
, “
History of Robotic Surgery
,”
J. Robot. Surg.
,
4
(
3
), pp.
141
147
.
6.
Fontanelli
,
G. A.
,
Ficuciello
,
F.
,
Villani
,
L.
, and
Siciliano
,
B.
,
2017
, “
Modelling and Identification of the da Vinci Research kit Robotic Arms
,”
Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
IEEE
, pp.
1464
1469
.
7.
Chandrasekaran
,
K.
, and
Thondiyath
,
A.
,
2020
, “
Design of a Tether-Driven Minimally Invasive Robotic Surgical Tool With Decoupled Degree-of-Freedom Wrist
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
16
(
3
), pp.
1478
5951
.
8.
Chandrasekaran
,
K.
,
Parameswaran
,
S.
,
Annamraju
,
S.
,
Chandra
,
S.
,
Manickam
,
R.
, and
Thondiyath
,
A.
,
2021
, “
A Practical Approach to the Design and Development of Tele-Operated Surgical Robots for Resource Constrained Environments—A Case Study
,”
ASME J. Med. Devices
,
15
(
1
), pp.
1
10
.
9.
Zhao
,
B.
, and
Nelson
,
C. A.
,
2013
, “
Decoupled Cable Driven Grasper Design Based on Planetary Gear Theory
,”
ASME J. Med. Device
,
7
(
2
), pp.
1
3
.
10.
Zhao
,
B.
, and
Nelson
,
C. A.
,
2016
, “
Estimating Tooltissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool
,”
ASME J. Mech. Rob.
,
8
(
5
), p. 051015.
11.
Hannaford
,
B.
,
Rosen
,
J.
,
Friedman
,
D. W.
,
King
,
H.
,
Roan
,
P.
,
Cheng
,
L.
,
Glozman
,
D.
,
Ma
,
J.
,
Kosari
,
S. N.
, and
White
,
L.
,
2013
, “
Raven-ii: An Open Platform for Surgical Robotics Research
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
954
959
.
12.
Bolǵar
,
D.
,
Krogh
,
S.
,
Maric
,
F.
, and
Silvani
,
N.
,
2016
, “Teleoperation of a surgical robot using force feedback”.
13.
Berkelman
,
P.
,
Cinquin
,
P.
,
Troccaz
,
J.
,
Ayoubi
,
J.
,
Letoublon
,
C.
, and
Bouchard
,
F.
,
2002
, “
A Compact, Compliant Laparoscopic Endoscope Manipulator
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, Vol.
2
, IEEE, pp.
1870
1875
.
14.
Berkelman
,
P. J.
,
Cinquin
,
P.
,
Troccaz
,
J.
,
Ayoubi
,
J.-M.
, and
Ĺetoublon
,
C.
,
2002
, “
Development of a Compact Cable-Driven Laparoscopic Endoscope Manipulator
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Springer
, pp.
17
24
.
15.
Hagn
,
U.
,
Konietschke
,
R.
,
Tobergte
,
A.
,
Nickl
,
M.
,
Jörg
,
S.
,
Kübler
,
B.
,
Passig
,
G.
, et al
,
2009
, “
Dlr Mirosurge: A Versatile System for Research in Endoscopic Telesurgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
5
(
2
), pp.
183
193
.
16.
Sung
,
G. T.
, and
Gill
,
I. S.
,
2001
, “
Robotic Laparoscopic Surgery: A Comparison of the da Vinci and Zeus Systems
,”
Urology
,
58
(
6
), pp.
893
898
.
17.
Eto
,
M.
, and
Naito
,
S.
,
2006
, “
Robotic Surgery Assisted by the Zeus System
,”
Endourooncology
,
6
, pp.
39
48
.
18.
Navarro
,
J. S.
,
Garcia
,
N.
,
Perez
,
C.
,
Fernandez
,
E.
,
Saltaren
,
R.
, and
Almonacid
,
M.
,
2010
, “
Kinematics of a Robotic 3ups1s Spherical Wrist Designed for Laparoscopic Applications
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
6
(
3
), pp.
291
300
.
19.
Sabater
,
J. M.
,
Garcia
,
N.
,
Perez
,
C.
,
Lopez
,
L. M.
,
Badesa
,
F. J.
, and
Mayol
,
J.
,
2010
, “
A New Spherical Wrist for Minimally Invasive Robotic Surgery
,”
ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), VDE
,
Munich, Germany
,
June 7–9
, pp.
1
6
.
20.
Lee
,
K. M.
, and
Shah
,
D. K.
,
1988
, “
Kinematic Analysis of a Three Degrees of Freedom In-Parallel Actuated Manipulator
,”
IEEE J. Robot. Autom.
,
4
(
3
), pp.
354
360
.
21.
Hong
,
M. B.
, and
Jo
,
Y. H.
,
2014
, “
Design of a Novel 4-DOF Wrist-Type Surgical Instrument With Enhanced Rigidity and Dexterity
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
500
511
.
22.
Deidda
,
R.
,
Mariani
,
A.
, and
Ruggiu
,
M.
,
2010
, “
On the Kinematics of the 3-Rrur Spherical Parallel Manipulator
,”
Robotica
,
28
(
6
), pp.
821
832
.
23.
Arata
,
J.
,
Mitsuishi
,
M.
,
Warisawa
,
S.
,
Tanaka
,
K.
,
Yoshizawa
,
T.
, and
Hashizume
,
M.
,
2005
, “
Development of a Dexterous Minimally-Invasive Surgical System With Augmented Force Feedback Capability
,”
Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
,
IEEE
, pp.
3207
3212
.
24.
Rose
,
A.
,
Wohlleber
,
C.
,
Kassner
,
S.
,
Schlaak
,
H. F.
, and
Werthsch¨utzky
,
R.
,
2009
, “
A Novel Piezoelectric Driven Laparoscopic Instrument With Multiple Degree of Freedom Parallel Kinematic Structure
,”
Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
,
IEEE
, pp.
2162
2167
.
25.
Ibrahim
,
K.
,
Ramadan
,
A.
,
Fanni
,
M.
,
Kobayashi
,
Y.
,
Abo-Ismail
,
A.
, and
Fujie
,
M. G.
,
2013
, “
Screw Theory Based-Design and Tracking Control of an Endoscopic Parallel Manipulator for Laparoscopic Surgery
,”
Proceedings of 2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
2491
2496
.
26.
Ibrahim
,
K.
,
Ramadan
,
A.
,
Fanni
,
M.
,
Kobayashi
,
Y.
,
Abo-Ismail
,
A.
, and
Fujie
,
M. G.
,
2015
, “
Development of a New 4-DOF Endoscopic Parallel Manipulator Based on Screw Theory for Laparoscopic Surgery
,”
Mechatronics
,
28
, pp.
4
17
.
27.
Bazman
,
M.
,
Yilmaz
,
N.
, and
Tumerdem
,
U.
,
2018
, “
Dexterous and Back-Drivable Parallel Robotic Forceps Wrist for Robotic Surgery
,”
Proceedings of 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC)
,
Tokyo, Japan
,
Mar. 9–11
,
IEEE
, pp.
153
159
.
28.
Yilmaz
,
N.
,
Bazman
,
M.
, and
Tumerdem
,
U.
,
2018
, “
External Force/Torque Estimation on a Dexterous Parallel Robotic Surgical Instrument Wrist
,”
Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
4396
4403
.
29.
Ishii
,
C.
,
Kobayashi
,
K.
,
Kamei
,
Y.
, and
Nishitani
,
Y.
,
2010
, “
Robotic Forceps Manipulator With a Novel Bending Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
15
(
5
), pp.
671
684
.
30.
Yamashita
,
H.
,
Iimura
,
A.
,
Aoki
,
E.
,
Suzuki
,
T.
,
Nakazawa
,
T.
,
Kobayashi
,
E.
,
Hashizume
,
M.
,
Sakuma
,
I.
, and
Dohi
,
T.
,
2005
, “
Development of Endoscopic Forceps Manipulator Using Multi-slider Linkage Mechanisms
,”
J. Jpn Soc. Comput. Aided Surg.
,
7
, pp.
201
204
.
31.
Ding
,
J.
,
Goldman
,
R. E.
,
Xu
,
K.
,
Allen
,
P. K.
,
Fowler
,
D. L.
, and
Simaan
,
N.
,
2013
, “
Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1612
1624
.
32.
Dobbs
,
R. W.
,
Halgrimson
,
W. R.
,
Madueke
,
I.
,
Vigneswaran
,
H. T.
,
Wilson
,
J. O.
, and
Crivellaro
,
S.
,
2019
, “
Single-Port Robot-Assisted Laparoscopic Radical Prostatectomy : Initial Experience and Technique With the da Vinci ^a SP Platform
,”
BJU Int.
,
124
(
6
), pp.
1022
1027
.
33.
Covas
,
M.
,
Bhat
,
S.
,
Rogers
,
T.
,
Onol
,
F.
,
Roof
,
S.
,
Mazzone
,
E.
,
Mottrie
,
A.
, and
Patel
,
V.
,
2020
, “
Technical Modifications Necessary to Implement the da Vinci Single-Port Robotic System
,”
Eur. Urol.
,
78
(
3
), pp.
415
423
.
34.
Alassi
,
A.
,
Yilmaz
,
N.
,
Bazman
,
M.
,
Gur
,
B.
, and
Tumerdem
,
U.
,
2018
, “
Development and Kinematic Analysis of a Redundant, Modular and Back Drivable Laparoscopic Surgery Robot
,”
Proceedings of 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
IEEE
, pp.
213
219
.
35.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
,
Nahon
,
M. A.
, and
Gosselin
,
C. M.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
.
36.
Rezaei
,
A.
,
Akbarzadeh
,
A.
,
Nia
,
P. M.
, and
Akbarzadeh-T
,
M. R.
,
2013
, “
Position, Jacobian and Workspace Analysis of a 3-psp Spatial Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
29
(
4
), pp.
158
173
.
37.
Majid
,
M. Z.
,
Huang
,
Z.
, and
Yao
,
Y. L.
,
2000
, “
Workspace Analysis of a Six-Degrees of Freedom, Three-Prismatic-Prismatic-Spheric-Revolute Parallel Manipulator
,”
Int. J. Adv. Manuf. Technol.
,
16
(
6
), pp.
441
449
.
38.
Maaroof
,
O. W.
,
Saeed
,
S. Z.
, and
Dede
,
M˙IC
,
2021
, “
Partial Gravity Compensation of a Surgical Robot
,”
Int. J. Adv. Robot. Syst.
,
18
(
3
), p.
17298814211015481
.
You do not currently have access to this content.