Abstract

In topology optimization using deep learning, the load and boundary conditions represented as vectors or sparse matrices often miss the opportunity to encode a rich view of the design problem, leading to less than ideal generalization results. We propose a new data-driven topology optimization model called TopologyGAN that takes advantage of various physical fields computed on the original, unoptimized material domain, as inputs to the generator of a conditional generative adversarial network (cGAN). Compared to a baseline cGAN, TopologyGAN achieves a nearly 3 × reduction in the mean squared error and a 2.5 × reduction in the mean absolute error on test problems involving previously unseen boundary conditions. Built on several existing network models, we also introduce a hybrid network called U-SE(Squeeze-and-Excitation)-ResNet for the generator that further increases the overall accuracy. We publicly share our full implementation and trained network.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
2.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
. 10.1016/0045-7825(91)90245-2
3.
Bendsøe
,
M. P.
,
2009
,
Topology Optimization
,
Springer
,
Berlin/Heidelberg
.
4.
Diaz
,
A.
, and
Bendsøe
,
M.
,
1992
, “
Shape Optimization of Structures for Multiple Loading Conditions Using a Homogenization Method
,”
Struct. Optim.
,
4
(
1
), pp.
17
22
. 10.1007/BF01894077
5.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
6.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
. 10.1007/s004190050248
7.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4–5
), pp.
401
424
. 10.1007/s00158-006-0087-x
8.
Biyikli
,
E.
, and
To
,
A. C.
,
2015
, “
Proportional Topology Optimization: A New Non-sensitivity Method for Solving Stress Constrained and Minimum Compliance Problems and Its Implementation in Matlab
,”
PLoS ONE
,
10
(
12
), p.
e0145041
. 10.1371/journal.pone.0145041
9.
Nie
,
Z.
,
Jung
,
S.
,
Kara
,
L. B.
, and
Whitefoot
,
K.
,
2019
, “
Optimization of Part Consolidation for Minimum Production Costs and Time Using Additive Manufacturing
,”
ASME J. Mech. Des.
,
142
(
7
), p.
072001
. 10.1115/1.4045106
10.
Suresh
,
K.
,
2010
, “
A 199-Line Matlab Code for Pareto-Optimal Tracing in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
42
(
5
), pp.
665
679
. 10.1007/s00158-010-0534-6
11.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
. 10.1016/0045-7949(93)90035-C
12.
Chu
,
D. N.
,
Xie
,
Y.
,
Hira
,
A.
, and
Steven
,
G.
,
1997
, “
On Various Aspects of Evolutionary Structural Optimization for Problems With Stiffness Constraints
,”
Finite Elements Anal. Des.
,
24
(
4
), pp.
197
212
. 10.1016/S0168-874X(96)00049-2
13.
Querin
,
O.
,
Steven
,
G.
, and
Xie
,
Y.
,
1998
, “
Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm
,”
Eng. Comput.
,
15
(
8
), pp.
1031
1048
. 10.1108/02644409810244129
14.
Young
,
V.
,
Querin
,
O. M.
,
Steven
,
G.
, and
Xie
,
Y.
,
1999
, “
3d and Multiple Load Case Bi-directional Evolutionary Structural Optimization (BESO)
,”
Struct. Optim.
,
18
(
2–3
), pp.
183
192
. 10.1007/BF01195993
15.
Reynolds
,
D.
,
McConnachie
,
J.
,
Bettess
,
P.
,
Christie
,
W.
, and
Bull
,
J.
,
1999
, “
Reverse Adaptivity–a New Evolutionary Tool for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
529
552
. 10.1002/(SICI)1097-0207(19990620)45:5<529::AID-NME599>3.0.CO;2-2
16.
Liu
,
J.
,
Parks
,
G.
, and
Clarkson
,
P.
,
2000
, “
Metamorphic Development: A New Topology Optimization Method for Continuum Structures
,”
Struct. Multidiscipl. Optim.
,
20
(
4
), pp.
288
300
. 10.1007/s001580050159
17.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
. 10.1007/BF01742933
18.
Eschenauer
,
H.
, and
Schumacher
,
A.
,
1997
, “Topology and Shape Optimization Procedures Using Hole Positioning Criteria,”
Topology Optimization in Structural Mechanics
,
G. I. N.
Rozvany
, ed.,
Springer
,
Vienna
, pp.
135
196
.
19.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
Comp. Rend. Math.
,
334
(
12
), pp.
1125
1130
. 10.1016/S1631-073X(02)02412-3
20.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
. 10.1016/j.jcp.2003.09.032
21.
Allaire
,
G.
,
De Gournay
,
F.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2005
, “
Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method
,”
Control Cyber.
,
34
(
1
), p.
59
.
22.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
. 10.1016/S0045-7825(02)00559-5
23.
Challis
,
V. J.
, and
Guest
,
J. K.
,
2009
, “
Level Set Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
79
(
10
), pp.
1284
1308
. 10.1002/nme.2616
24.
Suresh
,
K.
, and
Takalloozadeh
,
M.
,
2013
, “
Stress-Constrained Topology Optimization: a Topological Level-Set Approach
,”
Struct. Multidiscipl. Optim.
,
48
(
2
), pp.
295
309
. 10.1007/s00158-013-0899-4
25.
Ulu
,
E.
,
Mccann
,
J.
, and
Kara
,
L. B.
,
2017
, “
Lightweight Structure Design Under Force Location Uncertainty
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
13
. 10.1145/3072959.3073626
26.
Kelly
,
D.
, and
Elsley
,
M.
,
1995
, “
A Procedure for Determining Load Paths in Elastic Continua
,”
Eng. Comput.
,
12
(
5
), pp.
415
424
. 10.1108/02644409510799721
27.
Kelly
,
D.
,
Hsu
,
P.
, and
Asudullah
,
M.
,
2001
, “
Load Paths and Load Flow in Finite Element Analysis
,”
Eng. Comput.
,
18
(
1/2
), pp.
304
313
. 10.1108/02644400110365923
28.
Kelly
,
D.
,
Reidsema
,
C.
,
Bassandeh
,
A.
,
Pearce
,
G.
, and
Lee
,
M.
,
2011
, “
On Interpreting Load Paths and Identifying a Load Bearing Topology From Finite Element Analysis
,”
Finite Elements Anal. Des.
,
47
(
8
), pp.
867
876
. 10.1016/j.finel.2011.03.007
29.
Sobieszczanski-Sobieski
,
J.
,
1999
, “
Multidisciplinary Design Optimisation (MDO) Methods: Their Synergy With Computer Technology in the Design Process
,”
Aeronaut. J.
,
103
(
1026
), pp.
373
382
. 10.1017/S0001924000064599
30.
Allison
,
J. T.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
,
2009
, “
Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081008
. 10.1115/1.3178729
31.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
. 10.2514/1.J052182
32.
Ulu
,
E.
,
McCann
,
J.
, and
Kara
,
L. B.
,
2019
, “Structural Design Using Laplacian Shells,”
Computer Graphics Forum
,
H.
Hauser
and
B.
Benes
, eds., Vol.
38
,
Wiley Online Library
,
New York
, pp.
85
98
.
33.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
. 10.1007/s00158-013-0978-6
34.
Guo
,
T.
,
Lohan
,
D. J.
,
Cang
,
R.
,
Ren
,
M. Y.
, and
Allison
,
J. T.
,
2018
, “
An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
, p.
0804
.
35.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
. 10.1007/s00158-018-2101-5
36.
Rawat
,
S.
, and
Shen
,
M. H.
,
2019
, “
Application of Adversarial Networks for 3d Structural Topology Optimization
,” Technical Report, SAE Technical Paper.
37.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2005
, “
Topology Design With Conditional Generative Adversarial Networks
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
American Society of Mechanical Engineers Digital Collection
, pp.
1
9
.
38.
Ulu
,
E.
,
Zhang
,
R.
, and
Kara
,
L. B.
,
2016
, “
A Data-Driven Investigation and Estimation of Optimal Topologies Under Variable Loading Configurations
,”
Comput. Methods Biomech. Biomed. Eng.: Imag. Vis.
,
4
(
2
), pp.
61
72
. 10.1080/21681163.2015.1030775
39.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
. 10.1115/1.4044256
40.
Zhang
,
W.
,
Yang
,
Z.
,
Jiang
,
H.
,
Nigam
,
S.
,
Yamakawa
,
S.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Kara
,
L. B.
,
2019
, “
3d Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
American Society of Mechanical Engineers Digital Collection
, pp.
1
10
.
41.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
, “
3d Topology Optimization Using Convolutional Neural Networks
,” preprint arXiv:1808.07440.
42.
Cang
,
R.
,
Yao
,
H.
, and
Ren
,
Y.
,
2019
, “
One-Shot Generation of Near-Optimal Topology Through Theory-Driven Machine Learning
,”
Comput. Aided Des.
,
109
(
1
),
12
21
. 10.1016/j.cad.2018.12.008
43.
Lei
,
X.
,
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
, and
Guo
,
X.
,
2019
, “
Machine Learning-Driven Real-Time Topology Optimization Under Moving Morphable Component-Based Framework
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011004
. 10.1115/1.4041319
44.
Kumar
,
T.
, and
Suresh
,
K.
,
2019
, “
A Density-and-Strain-Based K-clustering Approach to Microstructural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
61
(
4
), pp.
1
17
. 10.1007/s00158-019-02422-4
45.
Rozvany
,
G. I.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3–4
), pp.
250
252
. 10.1007/BF01742754
46.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
. 10.1115/1.1388075
47.
Plocher
,
J.
, and
Panesar
,
A.
,
2019
, “
Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-Generation Lightweight Structures
,”
Mater. Des.
,
183
(
5
), p.
108164
. 10.1016/j.matdes.2019.108164
48.
Ambrosio
,
L.
, and
Buttazzo
,
G.
,
1993
, “
An Optimal Design Problem With Perimeter Penalization
,”
Calc. Var. Partial Differ. Equ.
,
1
(
1
), pp.
55
69
. 10.1007/BF02163264
49.
Petersson
,
J.
,
1999
, “
Some Convergence Results in Perimeter-Controlled Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
1–2
), pp.
123
140
. 10.1016/S0045-7825(98)00248-5
50.
Sharpe
,
C.
,
Wiest
,
T.
,
Wang
,
P.
, and
Seepersad
,
C. C.
,
2019
, “
A Comparative Evaluation of Supervised Machine Learning Classification Techniques for Engineering Design Applications
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121404
. 10.1115/1.4044524
51.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
. 10.1115/1.4044229
52.
Lin
,
Q.
,
Hong
,
J.
,
Liu
,
Z.
,
Li
,
B.
, and
Wang
,
J.
,
2018
, “
Investigation Into the Topology Optimization for Conductive Heat Transfer Based on Deep Learning Approach
,”
Int. Commun. Heat Mass Transfer
,
97
(
1
),
103
109
. 10.1016/j.icheatmasstransfer.2018.07.001
53.
Sosnovik
,
I.
, and
Oseledets
,
I.
,
2019
, “
Neural Networks for Topology Optimization
,”
Russ. J. Numer Anal. Math. Model.
,
34
(
4
), pp.
215
223
. 10.1515/rnam-2019-0018
54.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Montreal, Canada
, pp.
2672
2680
.
55.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,” preprint arXiv:1411.1784.
56.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
, pp.
1125
1134
.
57.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
, pp.
3431
3440
.
58.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Munich, Germany
,
Springer
, pp.
234
241
.
59.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
, pp.
770
778
.
60.
Hu
,
J.
,
Shen
,
L.
, and
Sun
,
G.
,
2018
, “
Squeeze-and-Excitation Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
, pp.
7132
7141
.
61.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
. https://doi.org/10.1115/1.4044097
62.
Hunter
,
W.
,
2017
, “Topy-Topology Optimization With Python.” https://github.com/williamhunter/topy
63.
Gómez
,
J.
, and
Guarín-Zapata
,
N.
,
2018
, “Solidspy: 2d-Finite Element Analysis With Python.” https://github.com/AppliedMechanics-EAFIT/SolidsPy
64.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint arXiv:1412.6980.
65.
Duchi
,
J.
,
Hazan
,
E.
, and
Singer
,
Y.
,
2011
, “
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
,”
J. Mach. Learn. Res.
,
12
(
7
), pp.
2121
2159
.
66.
Tieleman
,
T.
, and
Hinton
,
G.
,
2012
, “
Lecture 6.5-rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude
,”
COURSERA: Neural Netw. Mach. Learn.
,
4
(
2
), pp.
26
31
.
You do not currently have access to this content.