Abstract

The complex topological characteristics of network-like structural systems, such as lattice structures, cellular metamaterials, and mass transport networks, pose a great challenge for uncertainty qualification (UQ). Various UQ approaches have been developed to quantify parametric uncertainties or high dimensional random quantities distributed in a simply connected space (e.g., line section, rectangular area, etc.), but it is still challenging to consider the topological characteristics of the spatial domain for uncertainty representation and quantification. To resolve this issue, a network distance-based Gaussian random process uncertainty representation approach is proposed. By representing the topological input space as a node-edge network, the network distance is employed to replace the Euclidean distance in characterizing the spatial correlations. Furthermore, a conditional simulation-based sampling approach is proposed for generating realizations from the uncertainty representation model. Network node values are modeled by a multivariate Gaussian distribution, and the network edge values are simulated conditionally on the node values and the known network edge values. The effectiveness of the proposed approach is demonstrated on two engineering case studies: thermal conduction analysis of 3D lattice structures with stochastic properties and characterization of the distortion patterns of additively manufactured cellular structures.

References

1.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
. 10.1115/1.4046812
2.
Stanković
,
T.
, and
Shea
,
K.
,
2020
, “
Investigation of a Voronoi Diagram Representation for the Computational Design of Additively Manufactured Discrete Lattice Structures
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111704
. 10.1115/1.4046916
3.
Jiang
,
L.
,
Gu
,
X.
, and
Chen
,
S.
,
2020
, “
Generative Design of Bionic Structures Via Concurrent Multiscale Topology Optimization & Conformal Geometry Method
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011701
. 10.1115/1.4047345
4.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
. 10.1115/1.4044257
5.
Schniedenharn
,
M.
,
Wiedemann
,
F.
, and
Schleifenbaum
,
J. H.
,
2018
, “
Visualization of the Shielding Gas Flow in SLM Machines by Space-Resolved Thermal Anemometry
,”
Rapid Prototyp. J.
,
24
(
8
), pp.
1296
1304
. 10.1108/RPJ-07-2017-0149
6.
Ladewig
,
A.
,
Schlick
,
G.
,
Fisser
,
M.
,
Schulze
,
V.
, and
Glatzel
,
U.
,
2016
, “
Influence of the Shielding Gas Flow on the Removal of Process By-Products in the Selective Laser Melting Process
,”
Addit. Manuf.
,
10
, pp.
1
9
.
7.
Anwar
,
A. B.
, and
Pham
,
Q.-C.
,
2017
, “
Selective Laser Melting of AlSi10Mg: Effects of Scan Direction, Part Placement and Inert Gas Flow Velocity on Tensile Strength
,”
J. Mater. Process. Technol.
,
240
, pp.
388
396
. 10.1016/j.jmatprotec.2016.10.015
8.
Ferrar
,
B.
,
Mullen
,
L.
,
Jones
,
E.
,
Stamp
,
R.
, and
Sutcliffe
,
C.
,
2012
, “
Gas Flow Effects on Selective Laser Melting (SLM) Manufacturing Performance
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
355
364
. 10.1016/j.jmatprotec.2011.09.020
9.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
,
Stutzman
,
P. E.
,
Ferraris
,
C. F.
,
Watson
,
S. S.
, and
Peltz
,
M. A.
,
2014
, “
Characterization of Metal Powders Used for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, p.
460
. 10.6028/jres.119.018
10.
Tang
,
H.
,
Qian
,
M.
,
Liu
,
N.
,
Zhang
,
X.
,
Yang
,
G.
, and
Wang
,
J.
,
2015
, “
Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting
,”
JOM
,
67
(
3
), pp.
555
563
. 10.1007/s11837-015-1300-4
11.
Nandwana
,
P.
,
Peter
,
W. H.
,
Dehoff
,
R. R.
,
Lowe
,
L. E.
,
Kirka
,
M. M.
,
Medina
,
F.
, and
Babu
,
S. S.
,
2016
, “
Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting
,”
Metall. Mater. Trans. B
,
47
(
1
), pp.
754
762
. 10.1007/s11663-015-0477-9
12.
Ardila
,
L.
,
Garciandia
,
F.
,
González-Díaz
,
J.
,
Álvarez
,
P.
,
Echeverria
,
A.
,
Petite
,
M.
,
Deffley
,
R.
, and
Ochoa
,
J.
,
2014
, “
Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting
,”
Phys. Procedia
,
56
, pp.
99
107
. 10.1016/j.phpro.2014.08.152
13.
Ciurana
,
J.
,
Hernandez
,
L.
, and
Delgado
,
J.
,
2013
, “
Energy Density Analysis on Single Tracks Formed by Selective Laser Melting With CoCrMo Powder Material
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5–8
), pp.
1103
1110
. 10.1007/s00170-013-4902-4
14.
Zhou
,
Y.
, and
Saitou
,
K.
,
2017
, “
Gradient-Based Multi-Component Topology Optimization for Additive Manufacturing (MTO-A)
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
.
15.
Zhou
,
Y.
,
Nomura
,
T.
, and
Saitou
,
K.
,
2018
, “
Multi-Component Topology Optimization for Powder Bed Additive Manufacturing (MTO-A)
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
16.
Zhou
,
Y.
,
Nomura
,
T.
, and
Saitou
,
K.
,
2019
, “
Multicomponent Topology Optimization for Additive Manufacturing With Build Volume and Cavity Free Constraints
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021011
. 10.1115/1.4042640
17.
Thompson
,
M. E.
, and
Brown
,
S. R.
,
1991
, “
The Effect of Anisotropic Surface Roughness on Flow and Transport in Fractures
,”
J. Geophys. Res.: Solid Earth
,
96
(
B13
), pp.
21923
21932
. 10.1029/91JB02252
18.
Greene
,
M. S.
,
Xu
,
H.
,
Tang
,
S.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2013
, “
A Generalized Uncertainty Propagation Criterion From Benchmark Studies of Microstructured Material Systems
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
271
291
. 10.1016/j.cma.2012.10.023
19.
Bostanabad
,
R.
,
Zhang
,
Y.
,
Li
,
X.
,
Kearney
,
T.
,
Brinson
,
L. C.
,
Apley
,
D. W.
,
Liu
,
W. K.
, and
Chen
,
W.
,
2018
, “
Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques
,”
Prog. Mater. Sci.
,
95
, pp.
1
41
. 10.1016/j.pmatsci.2018.01.005
20.
Crevillen-Garcia
,
D.
,
Wilkinson
,
R.
,
Shah
,
A.
, and
Power
,
H.
,
2017
, “
Gaussian Process Modelling for Uncertainty Quantification in Convectively-Enhanced Dissolution Processes in Porous Media
,”
Adv. Water Resour.
,
99
, pp.
1
14
. 10.1016/j.advwatres.2016.11.006
21.
Wang
,
Y.
,
Lava
,
P.
,
Reu
,
P.
, and
Debruyne
,
D.
,
2016
, “
Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part I Temporal and Spatial Uncertainty Quantification of Displacement Measurements
,”
Strain
,
52
(
2
), pp.
110
128
. 10.1111/str.12173
22.
Xi
,
Z.
,
Youn
,
B. D.
,
Jung
,
B. C.
, and
Yoon
,
J. T.
,
2015
, “
Random Field Modeling With Insufficient Field Data for Probability Analysis and Design
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
599
611
. 10.1007/s00158-014-1165-0
23.
Luo
,
Y.
,
Zhan
,
J.
,
Xing
,
J.
, and
Kang
,
Z.
,
2019
, “
Non-Probabilistic Uncertainty Quantification and Response Analysis of Structures With a Bounded Field Model
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
663
678
. 10.1016/j.cma.2018.12.043
24.
Ostoja-Starzewski
,
M.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
(
19
), pp.
2429
2455
. 10.1016/S0020-7683(97)00144-3
25.
Greene
,
M. S.
,
Liu
,
Y.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2011
, “
Computational Uncertainty Analysis in Multiresolution Materials Via Stochastic Constitutive Theory
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
309
325
. 10.1016/j.cma.2010.08.013
26.
Xu
,
H.
,
Jiang
,
Z.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2016
, “
New Metrics for Validation of Data-Driven Random Process Models in Uncertainty Quantification
,”
J. Verif. Valid. Uncert. Quantif.
,
1
(
2
), p.
021002
. 10.1115/1.4031813
27.
Wei
,
X.
, and
Du
,
X.
,
2019
, “
Uncertainty Analysis for Time- and Space-Dependent Responses With Random Variables
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021402
. 10.1115/1.4041429
28.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
. 10.1115/1.4041946
29.
Asadpoure
,
A.
,
Tootkaboni
,
M.
, and
Guest
,
J. K.
,
2011
, “
Robust Topology Optimization of Structures With Uncertainties in Stiffness—Application to Truss Structures
,”
Comput. Struct.
,
89
(
11–12
), pp.
1131
1141
. 10.1016/j.compstruc.2010.11.004
30.
Richardson
,
J.
,
Coelho
,
R. F.
, and
Adriaenssens
,
S.
,
2016
, “
A Unified Stochastic Framework for Robust Topology Optimization of Continuum and Truss-Like Structures
,”
Eng. Optim.
,
48
(
2
), pp.
334
350
. 10.1080/0305215X.2015.1011152
31.
Chen
,
S.
,
Chen
,
W.
, and
Lee
,
S.
,
2010
, “
Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties
,”
Struct. Multidiscipl. Optim.
,
41
(
4
), pp.
507
524
. 10.1007/s00158-009-0449-2
32.
Lee
,
T.-C.
,
Kashyap
,
R. L.
, and
Chu
,
C.-N.
,
1994
, “
Building Skeleton Models Via 3-D Medial Surface Axis Thinning Algorithms
,”
CVGIP: Graph. Models Image Process.
,
56
(
6
), pp.
462
478
. 10.1006/cgip.1994.1042
33.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
. 10.1007/BF01386390
34.
Mathelin
,
L.
,
Hussaini
,
M. Y.
, and
Zang
,
T. A.
,
2005
, “
Stochastic Approaches to Uncertainty Quantification in CFD Simulations
,”
Numer. Algorithms
,
38
(
1–3
), pp.
209
236
. 10.1007/s11075-004-2866-z
35.
Lu
,
J.
,
Zhan
,
Z.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2019
, “
Uncertainty Propagation of Frequency Response Functions Using a Multi-Output Gaussian Process Model
,”
Comput. Struct.
,
217
, pp.
1
17
. 10.1016/j.compstruc.2019.03.009
36.
Oliver
,
T. A.
, and
Moser
,
R. D.
,
2011
, “
Bayesian Uncertainty Quantification Applied to RANS Turbulence Models
,”
J. Phys.: Conf. Ser.
,
318
(
4
), p.
042032
.
37.
Zhu
,
H.
, and
Zhang
,
L.
,
2013
, “
Characterizing Geotechnical Anisotropic Spatial Variations Using Random Field Theory
,”
Can. Geotech. J.
,
50
(
7
), pp.
723
734
. 10.1139/cgj-2012-0345
38.
Azzimonti
,
D.
,
Bect
,
J.
,
Chevalier
,
C.
, and
Ginsbourger
,
D.
,
2016
, “
Quantifying Uncertainties on Excursion Sets Under a Gaussian Random Field Prior
,”
SIAM/ASA J. Uncert. Quantif.
,
4
(
1
), pp.
850
874
. 10.1137/141000749
39.
Xu
,
H.
,
2020
, “
Constructing Oscillating Function-Based Covariance Matrix to Allow Negative Correlations in Gaussian Random Field Models for Uncertainty Quantification
,”
ASME J. Mech. Des.
,
142
(
7
), p.
074501
. 10.1115/1.4046067
40.
Xu
,
C.
,
Liu
,
Z.
,
Tao
,
W.
, and
Zhu
,
P.
,
2020
, “
A Vine Copula-Based Hierarchical Framework for Multiscale Uncertainty Analysis
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031101
. 10.1115/1.4045177
41.
Zhang
,
Q.
,
Xie
,
J.
,
Gao
,
Z.
,
London
,
T.
,
Griffiths
,
D.
, and
Oancea
,
V.
,
2019
, “
A Metallurgical Phase Transformation Framework Applied to SLM Additive Manufacturing Processes
,”
Mater. Des.
,
166
, p.
107618
. 10.1016/j.matdes.2019.107618
42.
Zhang
,
Q.
,
Xie
,
J.
,
London
,
T.
,
Griffiths
,
D.
,
Bhamji
,
I.
, and
Oancea
,
V.
,
2019
, “
Estimates of the Mechanical Properties of Laser Powder Bed Fusion Ti-6Al-4V Parts Using Finite Element Models
,”
Mater. Des.
,
169
, p.
107678
. 10.1016/j.matdes.2019.107678
43.
Lee
,
S. H.
, and
Chen
,
W.
,
2009
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box-Type Problems
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
239
253
. 10.1007/s00158-008-0234-7
You do not currently have access to this content.