Abstract

The configuration of a twin-screw positive displacement machine is proposed, consisting of an internally geared outer rotor meshing with an externally geared inner rotor. Helical rotors with constant profile and pitch are used with parallel rotor axes and stationary end plates incorporating inlet and discharge ports to achieve internal compression or expansion. The focus of this paper is to understand the effect of rotor geometry on two key performance indicators; the swept volume of the machine and the proportion of input power transferred between the inner and outer rotors. This requires a detailed analysis of the limitations on rotor profile generation, the formation of working chambers, and the forces exerted on the rotors. The choice of the rotor for power transfer to or from the machine is shown to be an important consideration, and helical rotors are found to enable lower power transfer between rotors during operation when compared with straight-cut rotors, but with reduced swept volume for the same machine size. For particular applications, this compromise is characterized through multi-objective optimization of the rotor profile and wrap angle in order to identify appropriate configurations for the proposed machine.

References

1.
Rundo
,
M.
,
2017
, “
Models for Flow Rate Simulation in Gear Pumps: A Review
,”
Energies
,
10
(
9
), p.
1261
. 10.3390/en10091261
2.
Cholet
,
H.
,
1997
,
Progressing Cavity Pumps
,
Editions Technips
,
Paris
.
3.
Moineau
,
R.
,
1934
, “
Gear Mechanism
,” U.S. Patent 1,892,217.
4.
Adams
,
G. P.
, and
Beard
,
J. E.
,
1997
, “
Comparison of Helical and Skewed Axis Gerotor Pumps
,”
Mech. Mach. Theory
,
32
(
6
), pp.
729
742
. 10.1016/S0094-114X(97)83006-6
5.
Dmitriev
,
O.
, and
Arbon
,
I.
,
2017
, “
Comparison of Energy-Efficiency and Size of Portable Oil-Free Screw and Scroll Compressors
,”
IOP Conference Series: Materials Science and Engineering
,
232
(
1
), p.
012057
.
6.
Read
,
M.
,
Smith
,
I.
, and
Stosic
,
N.
,
2017
, “
Internally Geared Screw Machines With Ported End Plates
,”
IOP Conference Series: Materials Science and Engineering
,
232
(
1
), p.
012058
.
7.
Read
,
M.
,
Stosic
,
N.
, and
Smith
,
I.
,
2017
, “
Operational Characteristics of Internally Geared Positive Displacement Screw Machines
,”
ASME International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, p.
V006T08A032
.
8.
Read
,
M.
,
Stosic
,
N.
, and
Smith
,
I.
,
2018
, “
Port Flow Losses in Internally Geared Positive Displacement Machines
,”
24th International Compressor Engineering Conference at Purdue
,
West Lafayette, IN
,
July 9–12
.
9.
Colbourne
,
J.
,
1974
, “
The Geometry of Trochoid Envelopes and Their Application in Rotary Pumps
,”
Mech. Mach. Theory
,
9
(
3–4
), pp.
421
435
. 10.1016/0094-114X(74)90025-1
10.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
,
1991
, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
ASME J. Mech. Des.
,
113
(
2
), pp.
133
141
. 10.1115/1.2912761
11.
Beard
,
J.
,
Yannitell
,
D.
, and
Pennock
,
G.
,
1992
, “
The Effects of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
,
27
(
4
), pp.
373
389
. 10.1016/0094-114X(92)90030-L
12.
Shung
,
J.B
, and
Pennock
,
G.R
,
1994
, “
Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,”
Mech. Mach. Theory
,
29
(
1
), pp.
25
42
. 10.1016/j.mechmachtheory.2009.01.001
13.
Tong
,
S.-H.
,
Yan
,
J.
, and
Yang
,
D. C. H.
,
2009
, “
Design of Deviation-Function Based Gerotors
,”
Mech. Mach. Theory
,
44
(
8
), pp.
1595
1606
. 10.1016/0094-114x(94)90017-5
14.
Yan
,
J.
,
Yang
,
D. C. H.
, and
Tong
,
S.-H.
,
2009
, “
A New Gerotor Design Method With Switch Angle Assignability
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011006
. 10.1115/1.3013442
15.
Hsieh
,
C.-F.
, and
Hwang
,
Y.-W.
,
2007
, “
Geometric Design for a Gerotor Pump With High Area Efficiency
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1269
1277
. 10.1115/1.2779887
16.
Hsieh
,
C.-F.
,
2009
, “
Influence of Gerotor Performance in Varied Geometrical Design Parameters
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121008
. 10.1115/1.4000484
17.
Hsieh
,
C.-F.
,
2012
, “
Fluid and Dynamics Analyses of a Gerotor Pump Using Various Span Angle Designs
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121003
. 10.1115/1.4007703
18.
Bonandrini
,
G.
,
Mimmi
,
G.
, and
Rottenbacher
,
C.
,
2009
, “
Theoretical Analysis of Internal Epitrochoidal and Hypotrochoidal Machines
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
(
6
), pp.
1469
1480
. 10.1243/09544062JMES1163
19.
Mimmi
,
G.
, and
Pennacchi
,
P.
,
1997
, “
Rotor Design and Optimization in Internal Lobe Pumps
,”
ASME Appl. Mech. Rev.
,
50
(
11S
), pp.
S133
S141
. 10.1115/1.3101825
20.
Bae
,
J. H.
,
Kwak
,
H. S.
,
San
,
S.
, and
Kim
,
C.
,
2016
, “
Design and CFD Analysis of Gerotor With Multiple Profiles (Ellipse–Involute–Ellipse Type and 3-Ellipses Type) Using Rotation and Translation Algorithm
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
5
), pp.
804
823
. 10.1177/0954406215583888
21.
Hao
,
C.
,
Wenming
,
Y.
, and
Guangming
,
L.
,
2016
, “
Design of Gerotor Oil Pump With New Rotor Profile for Improving Performance
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
4
), pp.
592
601
. 10.1177/0954406215618228
22.
Jacazio
,
G.
, and
Martin
,
A. D.
,
2016
, “
Influence of Rotor Profile Geometry on the Performance of An Original Low-Pressure Gerotor Pump
,”
Mech. Mach. Theory
,
100
, pp.
296
312
. 10.1016/j.mechmachtheory.2016.02.012
23.
Litvin
,
F.L.
, and
Feng
,
P.-H.
,
1996
, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
,
31
(
7
), pp.
891
911
. 10.1016/0094-114X(95)00115-F
24.
Vecchiato
,
D.
,
Demenego
,
A.
,
Argyris
,
J.
, and
Litvin
,
F. L.
,
2001
, “
Geometry of a Cycloidal Pump
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
18
), pp.
2309
2330
. 10.1016/S0045-7825(00)00236-X
25.
Mimmi
,
G. C.
, and
Pennacchi
,
P. E.
,
2000
, “
Non-Undercutting Conditions in Internal Gears
,”
Mech. Mach. Theory
,
35
(
4
), pp.
477
490
. 10.1016/S0094-114X(99)00028-2
26.
Mathias
,
J. A.
,
Johnston
,
J. R.
,
Cao
,
J.
,
Priedeman
,
D. K.
, and
Christensen
,
R. N.
,
2009
, “
xxx
,”
ASME J. Energy Res. Technol.
,
131
(
1
), p.
012201
. 10.1115/1.3066345
27.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
,
Mujal
,
R.
,
Khamashta
,
M.
, and
Codina
,
E.
,
2009
, “
Gerolab Package System: Innovative Tool to Design a Trochoidal-Gear Pump
,”
ASME J. Mech. Des.
,
131
(
7
), p.
074502
. 10.1115/1.3125889
28.
Gamez-Montero
,
P. J.
,
Garcia-Vilchez
,
M.
,
Raush
,
G.
,
Freire
,
J.
, and
Codina
,
E.
,
2012
, “
Teeth Clearance and Relief Grooves Effects in a Trochoidal-Gear Pump Using New Modules of Gerolab
,”
ASME J. Mech. Des.
,
134
(
5
), p.
054502
. 10.1115/1.4006440
29.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Mancó
,
S.
,
2002
, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
,
37
(
3
), pp.
311
332
. 10.1016/S0094-114X(01)00074-X
30.
Ivanović
,
L.
,
Devedžić
,
G.
,
Ćuković
,
S.
, and
Mirić
,
N.
,
2012
, “
Modeling of the Meshing of Trochoidal Profiles with Clearances
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041003
. 10.1115/1.4005621
31.
Robison
,
A.
, and
Vacca
,
A.
,
2018
, “
Multi-Objective Optimization of Circular-Toothed Gerotors for Kinematics and Wear by Genetic Algorithm
,”
Mech. Mach. Theory
,
128
, pp.
150
168
. 10.1016/j.mechmachtheory.2018.05.011
32.
Bonandrini
,
G.
,
Mimmi
,
G.
, and
Rottenbacher
,
C.
,
2012
, “
Design and Simulation of Meshing of a Particular Internal Rotary Pump
,”
Mech. Mach. Theory
,
49
, pp.
104
116
. 10.1016/j.mechmachtheory.2011.11.001
33.
Hsieh
,
C.-F.
,
2015
, “
Flow Characteristics of Gerotor Pumps With Novel Variable Clearance Designs
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041107
. 10.1115/1.4029274
34.
Stosic
,
N.
,
Smith
,
I.
, and
Kovacevic
,
A.
,
2005
,
Screw Compressors: Mathematical Modelling and Performance Calculation
,
Springer-Verlag
,
Berlin Heidelberg
.
35.
Adams
,
G. P.
, and
Soedel
,
W.
,
1995
, “
Computation of Compression Loads in Twin Screw Compressors
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
512
519
. 10.1115/1.2826712
36.
Hanjalic
,
K.
, and
Stosic
,
N.
,
1997
, “
Development and Optimization of Screw Machines With a Simulation Model – Part II: Thermodynamic Performance Simulation and Design Optimization
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
664
670
. 10.1115/1.2819296
You do not currently have access to this content.