Abstract

Process plans in additive manufacturing (AM) have a profound impact on the performance of fabricated parts such as geometric accuracy and mechanical properties. Due to its layer-based, additive nature, AM processes can be controlled at multiple scales starting from the scan vector/pixel scale. However, most process planning methods in AM configure process settings at the part scale. This leaves large unexplored regions in the design space that may include optimal designs. To address these untapped potentials, we present a process planning strategy based on the concept of manufacturing elements (MELs) to harness process variables at low scales for design. First, we decompose a part design into multiple MELs that contain geometric and manufacturing information. Two-scale process–structure–property (PSP) relationships are then constructed for MELs and their assembly. Decision tools, including the compromise decision support problem, are employed to navigate two-scale PSP relationships for supporting designers in design exploration on process variables and optimization of process plans. The proposed strategy is illustrated with a process planning example for a lattice structure, which has multiple design goals and is to be fabricated using material extrusion.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies:3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer
,
New York
.
2.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
. 10.1016/j.cad.2015.04.001
3.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
. 10.1007/s00170-015-6994-5
4.
Ren
,
K.
,
Chew
,
Y.
,
Fuh
,
J. Y. H.
,
Zhang
,
Y. F.
, and
Bi
,
G. J.
,
2019
, “
Thermo-Mechanical Analyses for Optimized Path Planning in Laser Aided Additive Manufacturing Processes
,”
Mater. Des.
,
162
, pp.
80
93
. 10.1016/j.matdes.2018.11.014
5.
Xiong
,
Y.
,
Van Campen
,
A.
,
Van Vlierberghe
,
A.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2017
, “
Time-Optimal Scan Path Planning Based on Analysis of Sliced Geometry
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
858
869
.
6.
Dreifus
,
G.
,
Goodrick
,
K.
,
Giles
,
S.
,
Patel
,
M.
,
Foster
,
R. M.
,
Williams
,
C.
,
Lindahl
,
J.
,
Post
,
B.
,
Roschli
,
A.
,
Love
,
L.
, and
Kunc
,
V.
,
2017
, “
Path Optimization Along Lattices in Additive Manufacturing Using the Chinese Postman Problem
,”
3D Print. Addit. Manuf.
,
4
(
2
), pp.
98
104
. 10.1089/3dp.2017.0007
7.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Van Duin
,
S.
, and
Larkin
,
N.
,
2016
, “
Bead Modelling and Implementation of Adaptive MAT Path in Wire and Arc Additive Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
39
, pp.
32
42
. 10.1016/j.rcim.2015.12.004
8.
Xiong
,
Y.
,
Park
,
S. I.
,
Padmanathan
,
S.
,
Dharmawan
,
A. G.
,
Foong
,
S.
,
Rosen
,
D. W.
, and
Soh
,
G. S.
,
2019
, “
Process Planning for Adaptive Contour Parallel Toolpath in Additive Manufacturing With Variable Bead Width
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4159
4170
. 10.1007/s00170-019-03954-1
9.
Isa
,
M. A.
, and
Lazoglu
,
I.
,
2019
, “
Five-Axis Additive Manufacturing of Freeform Models Through Buildup of Transition Layers
,”
J. Manuf. Syst.
,
50
, pp.
69
80
. 10.1016/j.jmsy.2018.12.002
10.
Li
,
J.
,
Jin
,
R.
, and
Yu
,
H. Z.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
. 10.1016/j.matdes.2017.11.028
11.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3591
3603
. 10.1007/s00170-017-1045-z
12.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Process.
,
14
(
2
), pp.
107
118
. 10.1016/j.jmapro.2011.10.002
13.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061012
. 10.1115/1.4028620
14.
Limaye
,
A. S.
, and
Rosen
,
D. W.
,
2007
, “
Process Planning Method for Mask Projection Micro-Stereolithography
,”
Rapid Prototyp. J.
,
13
(
2
), pp.
76
84
. 10.1108/13552540710736759
15.
Venturini
,
G.
,
Montevecchi
,
F.
,
Bandini
,
F.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2018
, “
Feature Based Three Axes Computer Aided Manufacturing Software for Wire Arc Additive Manufacturing Dedicated to Thin Walled Components
,”
Addit. Manuf.
,
22
, pp.
643
657
. 10.1016/j.addma.2018.06.013
16.
Zhao
,
G.
,
Ma
,
G.
,
Xiao
,
W.
, and
Tian
,
Y.
,
2019
, “
Feature-Based Five-Axis Path Planning Method for Robotic Additive Manufacturing
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
233
(
5
), pp.
1412
1424
. 10.1177/0954405417752508
17.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided. Des. Appl.
,
4
(
5
), pp.
585
594
. 10.1080/16864360.2007.10738493
18.
Rosen
,
D. W.
,
2018
, “
Manufacturing Elements to Support Design for Additive Manufacturing
,”
Proceedings of the International Conference on Progress in Additive Manufacturing
,
Singapore
,
May 14–17
, pp.
309
314
.
19.
Tang
,
Y.
,
Dong
,
G.
,
Zhou
,
Q.
, and
Zhao
,
Y. F.
,
2018
, “
Lattice Structure Design and Optimization with Additive Manufacturing Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1546
1562
. 10.1109/TASE.2017.2685643
20.
Dong
,
G.
,
Wijaya
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2018
, “
Optimizing Process Parameters of Fused Deposition Modeling by Taguchi Method for the Fabrication of Lattice Structures
,”
Addit. Manuf.
,
19
, pp.
62
72
. 10.1016/j.addma.2017.11.004
21.
Mistree
,
F.
,
Hughes
,
O.
, and
Bras
,
B.
,
1993
, “Compromise Decision Support Problem And The Adaptive Linear Programming Algorithm,”
Structural Optimization: Status And Promise
,
M. P.
Kamat
, ed.,
AIAA
,
Washington, DC
, pp.
247
286
.
22.
Bras
,
B.
, and
Mistree
,
F.
,
1993
, “
Robust Design Using Compromise Decision Support Problems
,”
Eng. Optim.
,
21
(
3
), pp.
213
239
. 10.1080/03052159308940976
23.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
. 10.1115/1.2202880
24.
Ming
,
Z.
,
Wang
,
G.
,
Yan
,
Y.
,
Panchal
,
J. H.
,
Goh
,
C. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
Ontology-Based Representation of Design Decision Hierarchies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011001
. 10.1115/1.4037934
25.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B. P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2016
, “
A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multistage Hot Rod Rolling System
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031403
. 10.1115/1.4035555
26.
Nellippallil
,
A. B.
,
Rangaraj
,
V.
,
Gautham
,
B. P.
,
Singh
,
A. K.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
An Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, and Manufacturing Processes
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111403
. 10.1115/1.4041050
27.
Sunil
,
V. B.
, and
Pande
,
S. S.
,
2008
, “
Automatic Recognition of Features From Freeform Surface CAD Models
,”
CAD Comput. Aided Des.
,
40
(
4
), pp.
502
517
. 10.1016/j.cad.2008.01.006
28.
Xiao
,
D.
,
Lin
,
H.
,
Xian
,
C.
, and
Gao
,
S.
,
2011
, “
CAD Mesh Model Segmentation by Clustering
,”
Comput. Graph.
,
35
(
3
), pp.
685
691
. 10.1016/j.cag.2011.03.020
29.
Zhang
,
Y.
,
Bernard
,
A.
,
Gupta
,
R. K.
, and
Harik
,
R.
,
2016
, “
Feature Based Building Orientation Optimization for Additive Manufacturing
,”
Rapid Prototyp. J.
,
22
(
2
), pp.
358
376
. 10.1108/RPJ-03-2014-0037
30.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2018
, “
A 149 Line Homogenization Code for Three-Dimensional Cellular Materials Written in Matlab
,”
ASME J. Eng. Mater. Technol.
,
141
(
1
), p.
011005
. 10.1115/1.4040555
31.
Kempen
,
K.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2015
, “
Processing AlSi10Mg by Selective Laser Melting: Parameter Optimisation and Material Characterisation
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
917
923
. 10.1179/1743284714Y.0000000702
32.
Xiong
,
Y.
,
Duong
,
L. T. P.
,
Wang
,
D.
,
Park
,
S.-I.
,
Ge
,
Q.
,
Raghavan
,
N.
, and
Rosen
,
D. W.
,
2019
, “
Data-Driven Design Space Exploration and Exploitation for Design for Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101101
. 10.1115/1.4043587
33.
Chacón
,
J. M.
,
Caminero
,
M. A.
,
García-Plaza
,
E.
, and
Núñez
,
P. J.
,
2017
, “
Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection
,”
Mater. Des.
,
124
, pp.
143
157
. 10.1016/j.matdes.2017.03.065
34.
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
. 10.1115/1.4006323
You do not currently have access to this content.