Abstract

This research presents a method of optimizing the consolidation of parts in an assembly using metal additive manufacturing (MAM). The method generates candidates for consolidation, filters them for feasibility and structural redundancy, finds the optimal build layout of the parts, and optimizes which parts to consolidate using a genetic algorithm. Results are presented for both minimal production time and minimal production costs, respectively. The production time and cost models consider each step of the manufacturing process, including MAM build, post-processing steps such as support structure removal, and assembly. It accounts for costs affected by part consolidation, including machine costs, material, scrap, energy consumption, and labor requirements. We find that developing a closed-loop filter that excludes consolidation candidates that are structurally redundant with others dramatically reduces the number of candidates, thereby significantly reducing convergence time. Results show that when increasing the number of parts that are consolidated, the production cost and time at first decrease due to reduced assembly steps, and then increase due to additional support structures needed to uphold the larger, consolidated parts. We present a rationale and evidence justifying that this is an important tradeoff of part consolidation that generalizes to many types of assemblies. Subsystems that are smaller, or can be oriented with very little support structures or have low material costs or fast deposition rates can have an optimum at full consolidation; for other subsystems, the optimum is less than 100%. The presented method offers a promising pathway to minimize production time and cost by consolidating parts using MAM. In our test-bed results for an aircraft fairing produced with powder-bed electron beam melting, the solution for minimizing production cost (time) is to consolidate 17 components into four (two) discrete parts, which leads to a 20% (25%) reduction in unit production cost (time).

References

1.
Yang
,
S.
,
Talekar
,
T.
,
Sulthan
,
M. A.
, and
Zhao
,
Y. F.
,
2017
, “
A Generic Sustainability Assessment Model Towards Consolidated Parts Fabricated by Additive Manufacturing Process
,”
Procedia Manuf.
,
10
(
1
), pp.
831
844
. 10.1016/j.promfg.2017.07.086
2.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Process.
,
20
(
3
), pp.
444
449
. 10.1016/j.jmapro.2015.06.024
3.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: a Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1
), pp.
327
342
. 10.1007/s00170-015-6994-5
4.
Hague
,
R.
,
2006
, “Unlocking the Design Potential of Rapid Manufacturing,”
Rapid Manufacturing: An Industrial Revolution for the Digital Age
,
N.
Hopkinson
,
R. J. M.
Hague
,
P. M.
Dickens
, eds.,
John Wiley & Sons
,
The Atrium, West Sussex, England
, pp.
5
18
.
5.
Uriondo
,
A.
,
Esperon-Miguez
,
M.
, and
Perinpanayagam
,
S.
,
2015
, “
The Present and Future of Additive Manufacturing in the Aerospace Sector: A Review of Important Aspects
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
11
), pp.
2132
2147
. 10.1177/0954410014568797
6.
Wong
,
K. V.
, and
Hernandez
,
A. J. I. M. E.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
(
1
).
7.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
8.
Frey
,
D.
,
Palladino
,
J.
,
Sullivan
,
J.
, and
Atherton
,
M.
,
2007
, “
Part Count and Design of Robust Systems
,”
Syst. Eng.
,
10
(
3
), pp.
203
221
. 10.1002/sys.20071
9.
Türk
,
D.-A.
,
Kussmaul
,
R.
,
Zogg
,
M.
,
Klahn
,
C.
,
Leutenecker-Twelsiek
,
B.
, and
Meboldt
,
M.
,
2017
, “
Composites Part Production with Additive Manufacturing Technologies
,”
Procedia CIRP
,
66
(
1
), pp.
306
311
. 10.1016/j.procir.2017.03.359
10.
Booker
,
J.
,
Swift
,
K.
, and
Brown
,
N.
,
2005
, “
Designing for Assembly Quality: Strategies, Guidelines and Techniques
,”
J. Engi. Des.
,
16
(
3
), pp.
279
295
. 10.1080/09544820500126672
11.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2001
,
Product Design for Manufacture and Assembly, Revised and Expanded
,
CRC Press
,
Boca Raton, FL
.
12.
Combemale
,
C.
,
Whitefoot
,
K. S.
,
Ales
,
L.
, and
Fuchs
,
E. R.
,
2019
, “
Not All Technological Change is Equal: Disentangling Labor Demand Effects of Simultaneous Changes
,”
Academy of Management Proceedings Demand Effects of Automation and Parts Consolidation
,
2019
(
1
), pp.
1
67
.
13.
Taufik
,
M.
, and
Jain
,
P. K.
,
2013
, “
Role of Build Orientation in Layered Manufacturing: a Review
,”
Int. J. Manuf. Technol. Manage.
,
27
(
1–3
), pp.
47
73
. 10.1504/IJMTM.2013.058637
14.
Jibin
,
Z.
,
2005
, “
Determination of Optimal Build Orientation Based on Satisfactory Degree Theory for RPT
,”
Proceedings of the Ninth International Conference on Proceedings of the Computer Aided Design and Computer Graphics
,
Washington, DC
,
Dec. 7–10
, IEEE, Silver Spring, MD, p. 6.
15.
Thomas
,
D. S.
, and
Gilbert
,
S. W.
,
2014
,
Costs and Cost Effectiveness of Additive Manufacturing
,
Special Publication, NIST
,
Gaithersburg, MD
.
16.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comp.-Aided Des.
,
30
(
5
), pp.
343
356
. 10.1016/S0010-4485(97)00083-3
17.
Langelaar
,
M.
,
2016
, “
Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
(
1
), pp.
60
70
. 10.1016/j.addma.2016.06.010
18.
Leary
,
M.
,
Merli
,
L.
,
Torti
,
F.
,
Mazur
,
M.
, and
Brandt
,
M.
,
2014
, “
Optimal Topology for Additive Manufacture: a Method for Enabling Additive Manufacture of Support-Free Optimal Structures
,”
Mater. Des.
,
63
(
1
), pp.
678
690
. 10.1016/j.matdes.2014.06.015
19.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
Comp.-Aided Des.
,
81
(
1
), pp.
1
13
. 10.1016/j.cad.2016.08.006
20.
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Optimization of Layered Manufacturing Process for Reducing Form Errors With Minimal Support Structures
,”
J. Manuf. Syst.
,
36
(
1
), pp.
231
243
. 10.1016/j.jmsy.2014.06.014
21.
Vanek
,
J.
,
Galicia
,
J. A. G.
, and
Benes
,
B.
,
2014
, “
Clever Support: Efficient Support Structure Generation for Digital Fabrication
,”
Computer Graphics Forum
,
33
(
5
), pp.
117
125
.
22.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2001
,
Product Design for Manufacture and Assembly
,
CRC Press
,
Boca Raton, FL
.
23.
Yang
,
S.
,
Santoro
,
F.
, and
Zhao
,
Y. F.
,
2018
, “
Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041701
. 10.1115/1.4038923
24.
Chadha
,
C.
,
Crowe
,
K.
,
Carmen
,
C.
, and
Patterson
,
A.
,
2018
, “
Exploring an AM-Enabled Combination-of-Functions Approach for Modular Product Design
,”
Designs
,
2
(
4
), p.
37
. 10.3390/designs2040037
25.
Yang
,
S.
,
Santoro
,
F.
,
Sulthan
,
M. A.
, and
Zhao
,
Y. F.
,
2019
, “
A Numerical-Based Part Consolidation Candidate Detection Approach With Modularization Considerations
,”
Res. Eng. Des.
,
30
(
1
), pp.
63
83
. 10.1007/s00163-018-0298-3
26.
Nyaluke
,
A.
,
Nasser
,
B.
,
Leep
,
H. R.
, and
Parsaei
,
H. R.
,
1996
, “
Rapid Prototyping Work Space Optimization
,”
Comp. Ind. Eng.
,
31
(
1–2
), pp.
103
106
. 10.1016/0360-8352(96)00202-1
27.
Canellidis
,
V.
,
Dedoussis
,
V.
,
Mantzouratos
,
N.
, and
Sofianopoulou
,
S.
,
2006
, “
Pre-processing Methodology for Optimizing Stereolithography Apparatus Build Performance
,”
Comp. Ind.
,
57
(
5
), pp.
424
436
. 10.1016/j.compind.2006.02.004
28.
Wodziak
,
J. R.
,
Fadel
,
G. M.
, and
Kirschman
,
C.
,
1994
, “
A Genetic Algorithm for Optimizing Multiple Part Placement to Reduce Build Time
,”
Proceedings of the Fifth International Conference on Rapid Prototyping
,
Dayton, OH
,
June 12–15
, pp. 201–210.
29.
Zhang
,
X.
,
Zhou
,
B.
,
Zeng
,
Y.
, and
Gu
,
P.
,
2002
, “
Model Layout Optimization for Solid Ground Curing Rapid Prototyping Processes
,”
Rob. Comp.-Integr. Manuf.
,
18
(
1
), pp.
41
51
. 10.1016/S0736-5845(01)00022-9
30.
Hur
,
S.-M.
,
Choi
,
K.-H.
,
Lee
,
S.-H.
, and
Chang
,
P.-K.
,
2001
, “
Determination of Fabricating Orientation and Packing in SLS Process
,”
J. Mater. Process. Technol.
,
112
(
2–3
), pp.
236
243
. 10.1016/S0924-0136(01)00581-7
31.
Canellidis
,
V.
,
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2013
, “
Efficient Parts Nesting Schemes for Improving Stereolithography Utilization
,”
Comp.-Aided Des.
,
45
(
5
), pp.
875
886
. 10.1016/j.cad.2012.12.002
32.
Zhang
,
Y.
,
Gupta
,
R. K.
, and
Bernard
,
A.
,
2016
, “
Two-Dimensional Placement Optimization for Multi-Parts Production in Additive Manufacturing
,”
Rob. Comp.-Integr. Manuf.
,
38
, pp.
102
117
. 10.1016/j.rcim.2015.11.003
33.
Gogate
,
A.
, and
Pande
,
S.
,
2008
, “
Intelligent Layout Planning for Rapid Prototyping
,”
Int. J. Prod. Res.
,
46
(
20
), pp.
5607
5631
. 10.1080/00207540701277002
34.
Wu
,
S.
,
Kay
,
M.
,
King
,
R.
,
Vila-Parrish
,
A.
,
Warsing
,
D.
, and
Institute of Industrial and Systems Engineers (IISE)
,
2014
, “
Multi-Objective Optimization of 3D Packing Problem in Additive Manufacturing
,”
Proceedings of the IIE Annual Conference
,
Montreal, Canada
,
May 31–June 3
, p.
1485
.
35.
Pandey
,
P. M.
,
Thrimurthulu
,
K.
, and
Reddy
,
N. V.
,
2004
, “
Optimal Part Deposition Orientation in FDM by Using a Multicriteria Genetic Algorithm
,”
Int. J. Prod. Res.
,
42
(
19
), pp.
4069
4089
. 10.1080/00207540410001708470
36.
Thrimurthulu
,
K.
,
Pandey
,
P. M.
, and
Reddy
,
N. V.
,
2004
, “
Optimum Part Deposition Orientation in Fused Deposition Modeling
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
585
594
. 10.1016/j.ijmachtools.2003.12.004
37.
Phatak
,
A. M.
, and
Pande
,
S. S.
,
2012
, “
Optimum Part Orientation in Rapid Prototyping Using Genetic Algorithm
,”
J. Manuf. Syst.
,
31
(
4
), pp.
395
402
. 10.1016/j.jmsy.2012.07.001
38.
Johnson
,
M.
, and
Kirchain
,
R.
,
2009
, “
Quantifying the Effects of Parts Consolidation and Development Costs on Material Selection Decisions: A Process-Based Costing Approach
,”
Int. J. Prod. Econ.
,
119
(
1
), pp.
174
186
. 10.1016/j.ijpe.2009.02.003
39.
Rickenbacher
,
L.
,
Spierings
,
A.
, and
Wegener
,
K.
,
2013
, “
An Integrated Cost-Model for Selective Laser Melting (SLM)
,”
Rapid Prototyping J.
,
19
(
3
), pp.
208
214
. 10.1108/13552541311312201
40.
Ulu
,
E.
,
Huang
,
R.
,
Kara
,
L. B.
, and
Whitefoot
,
K. S.
,
2019
, “
Concurrent Structure and Process Optimization for Minimum Cost Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
6
), p. 061701. 10.1115/1.4042112
41.
Baumers
,
M.
,
Dickens
,
P.
,
Tuck
,
C.
, and
Hague
,
R.
,
2016
, “
The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push
,”
Technol. Forecasting Soc. Change
,
102
(
1
), pp.
193
201
. 10.1016/j.techfore.2015.02.015
42.
Dinda
,
S.
,
Modi
,
D.
,
Simpson
,
T. W.
,
Tedia
,
S.
, and
Williams
,
C. B.
, “
Expediting Build Time, Material, and Cost Estimation for Material Extrusion Processes to Enable Mobile Applications
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
V02AT03A034
.
43.
Ruffo
,
M.
,
Tuck
,
C.
, and
Hague
,
R.
,
2006
, “
Cost Estimation for Rapid Manufacturing-Laser Sintering Production for Low to Medium Volumes
,”
Proc. Inst. Mech. Eng. B
,
220
(
9
), pp.
1417
1427
. 10.1243/09544054JEM517
44.
Yim
,
S.
, and
Rosen
,
D.
,
2012
, “
Build Time and Cost Models for Additive Manufacturing Process Selection
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
375
382
.
45.
Ulu
,
E.
,
Korkmaz
,
E.
,
Yay
,
K.
,
Ozdoganlar
,
O. B.
, and
Kara
,
L. B.
,
2015
, “
Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111410
. 10.1115/1.4030998
46.
Toh
,
W. Q.
,
Wang
,
P.
,
Tan
,
X.
,
Nai
,
M. L. S.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2016
, “
Microstructure and Wear Properties of Electron Beam Melted Ti-6Al-4V Parts: A Comparison Study Against as-Cast Form
,”
Metals
,
6
(
11
), p.
284
. 10.3390/met6110284
47.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
(
1
), pp.
87
98
. 10.1016/j.addma.2014.08.002
48.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
. 10.1016/S1005-0302(12)60016-4
49.
Nie
,
Z.
,
Wang
,
G.
,
McGuffin-Cawley
,
J. D.
,
Narayanan
,
B.
,
Zhang
,
S.
,
Schwam
,
D.
,
Kottman
,
M.
, and
Rong
,
Y. K.
,
2016
, “
Experimental Study and Modeling of H13 Steel Deposition Using Laser Hot-Wire Additive Manufacturing
,”
J. Mater. Process. Technol.
,
235
(
1
), pp.
171
186
. 10.1016/j.jmatprotec.2016.04.006
50.
Gockel
,
J.
,
Beuth
,
J.
, and
Taminger
,
K.
,
2014
, “
Integrated Control of Solidification Microstructure and Melt Pool Dimensions in Electron Beam Wire Feed Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
1–4
(
1
), pp.
119
126
. 10.1016/j.addma.2014.09.004
51.
Chen
,
N.
, and
Frank
,
M. C.
,
2017
, “
A Method for Metal AM Support Structure Design to Facilitate Removal
,”
The 28th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 7–9
, pp.
1516
1524
.
52.
Vaidya
,
R.
, and
Anand
,
S. J. P. M.
,
2016
, “
Optimum Support Structure Generation for Additive Manufacturing Using Unit Cell Structures and Support Removal Constraint
,”
Procedia Manuf
,
5
(
1
), pp.
1043
1059
. 10.1016/j.promfg.2016.08.072
53.
Jebari
,
K.
, and
Madiafi
,
M.
,
2013
, “
Selection Methods for Genetic Algorithms
,”
Int. J. Emerging Sci.
,
3
(
4
), pp.
333
344
.
54.
You do not currently have access to this content.