Abstract

To represent input variability accurately, an input distribution model for random variables should be constructed using many data. However, for certain input variables, engineers may have only their intervals, which represent input uncertainty. In practical engineering applications, both random and interval variables could exist at the same time. To consider both input variability and uncertainty, inverse reliability analysis should be carried out considering both random and interval variables—mixed variables—and their mathematical correlation in a performance measure. In this paper, an iterative most probable point (MPP) search method has been developed for the mixed-variable problem. The update procedures for MPP search are developed considering the features of mixed variables in the inverse reliability analysis. MPP search for random and interval variables proceed simultaneously to consider the mathematical correlation. An interpolation method is introduced to find a better candidate MPP without additional function evaluations. Mixed-variable design optimization (MVDO) has been formulated to obtain cost-effective and reliable design in the presence of mixed variables. In addition, the design sensitivity of a probabilistic constraint has been developed for an effective and efficient MVDO procedure. Using numerical examples, it is found that the developed MPP search method finds an accurate MPP more efficiently than the generic optimization method does. In addition, it is verified that the developed method enables the MVDO process with a small number of function evaluations.

References

1.
Dowling
,
N. E.
,
2013
,
Mechanical Behavior of Materials
, 4th ed.,
Pearson
,
Boston, MA
.
2.
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N. J.
,
Lee
,
I.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2016
, “
Conservative Reliability-Based Design Optimization Method With Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1609
1630
. 10.1007/s00158-016-1492-4
3.
Jung
,
Y.
,
Cho
,
H.
, and
Lee
,
I.
,
2019
, “
Reliability Measure Approach for Confidence-Based Design Optimization Under Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
60
(
5
), pp.
1967
1982
. 10.1007/s00158-019-02299-3
4.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1068
1076
. 10.1115/1.1992510
5.
Du
,
X.
,
2008
, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091401
. 10.1115/1.2943295
6.
Zhou
,
J.
, and
Mourelatos
,
Z. P.
,
2008
, “
A Sequential Algorithm for Possibility-Based Design Optimization
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011001
. 10.1115/1.2803250
7.
Guo
,
J.
, and
Du
,
X.
,
2009
, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
,
78
(
13
), pp.
1585
1617
. 10.1002/nme.2543
8.
Yoo
,
D.
, and
Lee
,
I.
,
2014
, “
Sampling-Based Approach for Design Optimization in the Presence of Interval Variables
,”
Struct. Multidiscip. Optim.
,
49
(
2
), pp.
253
266
. 10.1007/s00158-013-0969-7
9.
Yoo
,
D.
,
Lee
,
I.
, and
Tang
,
J.
,
2017
, “
Reliability-Oriented Optimal Design of Intentional Mistuning for a Bladed Disk With Random and Interval Uncertainties
,”
Eng. Optim.
,
49
(
5
), pp.
796
814
. 10.1080/0305215X.2016.1206538
10.
Du
,
L.
, and
Choi
,
K. K.
,
2008
, “
An Inverse Analysis Method for Design Optimization With Both Statistical and Fuzzy Uncertainties
,”
Struct. Multidiscip. Optim.
,
37
(
2
), pp.
107
119
. 10.1007/s00158-007-0225-0
11.
Wu
,
Y.-T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
,
1990
, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
,
28
(
9
), pp.
1663
1669
. 10.2514/3.25266
12.
Wu
,
Y.-T.
,
1994
, “
Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis
,”
AIAA J.
,
32
(
8
), pp.
1717
1723
. 10.2514/3.12164
13.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
. 10.1115/1.1561042
14.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Adaptive Probability Analysis Using an Enhanced Hybrid Mean Value Method
,”
Struct. Multidiscip. Optim.
,
29
(
2
), pp.
134
148
. 10.1007/s00158-004-0452-6
15.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
. 10.2514/1.6648
16.
Meng
,
Z.
,
Li
,
G.
,
Wang
,
B. P.
, and
Hao
,
P.
,
2015
, “
A Hybrid Chaos Control Approach of the Performance Measure Functions for Reliability-Based Design Optimization
,”
Comput. Struct.
,
146
, pp.
32
43
. 10.1016/j.compstruc.2014.08.011
17.
Li
,
G.
,
Meng
,
Z.
, and
Hu
,
H.
,
2015
, “
An Adaptive Hybrid Approach for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
51
(
5
), pp.
1051
1065
. 10.1007/s00158-014-1195-7
18.
Hao
,
P.
,
Wang
,
B.
,
Li
,
G.
,
Meng
,
Z.
, and
Wang
,
L.
,
2015
, “
Hybrid Framework for Reliability-Based Design Optimization of Imperfect Stiffened Shells
,”
AIAA J.
,
53
(
10
), pp.
2878
2889
. 10.2514/1.J053816
19.
Keshtegar
,
B.
,
Hao
,
P.
, and
Meng
,
Z.
,
2017
, “
A Self-Adaptive Modified Chaos Control Method for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
55
(
1
), pp.
63
75
. 10.1007/s00158-016-1471-9
20.
Keshtegar
,
B.
, and
Hao
,
P.
,
2016
, “
A Hybrid Loop Approach Using the Sufficient Descent Condition for Accurate, Robust, and Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121401
. 10.1115/1.4034173
21.
Keshtegar
,
B.
, and
Lee
,
I.
,
2016
, “
Relaxed Performance Measure Approach for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1439
1454
. 10.1007/s00158-016-1561-8
22.
Chen
,
X.
,
Hasselman
,
T.
,
Neill
,
D.
,
Chen
,
X.
,
Hasselman
,
T.
, and
Neill
,
D.
,
1997
, “
Reliability Based Structural Design Optimization for Practical Applications
,”
38th Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics
,
Kissimmee, FL
,
Apr. 7–10
, pp.
2724
2732
.
23.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
,
2004
, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
30th Design Automation Conference, American Society of Mechanical Engineers
,
Salt Lake City, UT
,
Sep. 28–Oct. 2
, pp.
419
430
.
24.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
25.
Cho
,
T. M.
, and
Lee
,
B. C.
,
2011
, “
Reliability-Based Design Optimization Using Convex Linearization and Sequential Optimization and Reliability Assessment Method
,”
Struct. Saf.
,
33
(
1
), pp.
42
50
. 10.1016/j.strusafe.2010.05.003
26.
Zou
,
T.
, and
Mahadevan
,
S.
,
2006
, “
A Direct Decoupling Approach for Efficient Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
190
200
. 10.1007/s00158-005-0572-7
27.
Agarwal
,
H.
,
Mozumder
,
C. K.
,
Renaud
,
J. E.
, and
Watson
,
L. T.
,
2007
, “
An Inverse-Measure-Based Unilevel Architecture for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
217
227
. 10.1007/s00158-006-0057-3
28.
Kharmanda
,
G.
,
Mohamed
,
A.
, and
Lemaire
,
M.
,
2002
, “
Efficient Reliability-Based Design Optimization Using a Hybrid Space With Application to Finite Element Analysis
,”
Struct. Multidiscip. Optim.
,
24
(
3
), pp.
233
245
. 10.1007/s00158-002-0233-z
29.
Mohsine
,
A.
,
Kharmanda
,
G.
, and
El-Hami
,
A.
,
2006
, “
Improved Hybrid Method as a Robust Tool for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
32
(
3
), pp.
203
213
. 10.1007/s00158-006-0013-2
30.
Royset
,
J. O.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
,
2001
, “
Reliability-Based Optimal Structural Design by the Decoupling Approach
,”
Reliab. Eng. Syst. Saf.
,
73
(
3
), pp.
213
221
. 10.1016/S0951-8320(01)00048-5
31.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Integration of Statistics- and Physics-Based Methods—A Feasibility Study on Accurate System Reliability Prediction
,”
ASME J. Mech. Des.
,
140
(
7
), p.
074501
. 10.1115/1.4039770
32.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
. 10.1214/aoms/1177729394
33.
Nelsen
,
R. B.
,
2006
,
An Introduction to Copulas
,
Springer
,
New York, NY
.
34.
Cho
,
H.
,
Choi
,
K. K.
, and
Lamb
,
D.
,
2017
, “
Sensitivity Developments for RBDO With Dependent Input Variable and Varying Input Standard Deviation
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071402
. 10.1115/1.4036568
35.
Noh
,
Y.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2010
, “
Identification of Marginal and Joint CDFs Using Bayesian Method for RBDO
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
35
51
. 10.1007/s00158-009-0385-1
36.
Cho
,
H.
,
Bae
,
S.
,
Choi
,
K. K.
,
Lamb
,
D.
, and
Yang
,
R.-J.
,
2014
, “
An Efficient Variable Screening Method for Effective Surrogate Models for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
50
(
5
), pp.
717
738
. 10.1007/s00158-014-1096-9
37.
Arora
,
J. S.
,
2012
,
Introduction to Optimum Design
, 3rd ed.,
Academic Press
,
Waltham, MA
.
38.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2014
, “
Second-Order Reliability Method-Based Inverse Reliability Analysis Using Hessian Update for Accurate and Efficient Reliability-Based Design Optimization
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
773
792
. 10.1002/nme.4775
39.
Jung
,
Y.
,
Cho
,
H.
, and
Lee
,
I.
,
2019
, “
MPP-Based Approximated DRM (ADRM) Using Simplified Bivariate Approximation with Linear Regression
,”
Struct. Multidiscip. Optim.
,
59
(
5
), pp.
1761
1773
. 10.1007/s00158-018-2160-7
40.
Hou
,
G. J. W.
,
2004
, “
A Most Probable Point-Based Method for Reliability Analysis, Sensitivity Analysis, and Design Optimization
”,
NASA
,
NASA/CR-2004-213002
.
41.
Choi
,
K. K.
,
Youn
,
B. D.
, and
Yang
,
R.-J.
,
2001
, “
Moving Least Square Method for Reliability-Based Design Optimization
,”
4th World Congress of Structural and Multidisciplinary Optimization
,
Dalian, China
,
June 4–8
, pp.
1
7
.
42.
Lewis
,
K.
, and
Mistree
,
F.
,
1998
, “
Collaborative, Sequential, and Isolated Decisions in Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
643
652
. 10.1115/1.2829327
You do not currently have access to this content.