Abstract

Conceptual design of spatial compliant mechanisms with distinct input and output ports may be hard because of its complex interconnected topology and is currently accomplished by computationally intensive automated techniques. This paper proposes a user insightful method for generating conceptual compliant topology solutions. The method builds on recent advances where the compliant mechanism deformation is represented as load flow in its constituent members. The nature of load flow enables functional decomposition of compliant mechanisms into maximally decoupled building blocks, namely, a transmitter member and a constraint member. The proposed design methodology seeks to synthesize spatial compliant designs by systematically combining transmitter-constraint members first, identifying kinematically feasible transmitter load paths between input(s) and output(s), and then selecting appropriate constraints that enforce the load path. The paper proposes four design steps to generate feasible solutions and four additional guidelines to optimize load paths and constraint orientations. The method is applied with equal ease to three spatial complaint mechanism examples that belong to single-input single-output, multiple-input single output, and single-input multiple-output mechanisms.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John-Wiley
,
New York
.
2.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
,
1999
, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
IEEE/ASME Trans. Mechatron.
,
4
(
4
), pp.
396
408
. 10.1109/3516.809518
3.
Ananthasuresh
,
G. K.
,
1994
, “
A New Design Paradigm in Microelectromechanical Systems and Investigations on Compliant Mechanisms
,” Ph.D thesis,
University of Michigan
,
Ann Arbor, MI
.
4.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
CRC Press
,
London
.
5.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
. 10.1115/1.2717231
6.
Lu
,
K.-J.
, and
Kota
,
S.
,
2005
, “
An Effective Method of Synthesizing Compliant Adaptive Structures Using Load Path Representation
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
307
317
. 10.1177/1045389X05050104
7.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
8.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), p.
238
. 10.1115/1.2826242
9.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscipl. Optim.
,
19
(
1
), pp.
36
49
. 10.1007/s001580050084
10.
Zhang
,
X.
, and
Zhu
,
B.
,
2018
,
Topology Optimization of Compliant Mechanisms
,
Springer
,
Singapore
.
11.
Blanding
,
D. K.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME Press
,
New York
.
12.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
. 10.1115/1.2735342
13.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2011
, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
. 10.1115/1.4002513
14.
Kim
,
C. J.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022308
. 10.1115/1.2821387
15.
Kim
,
C.
,
Kota
,
S.
, and
Mo-Moon
,
Y.
,
2006
, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
542
550
. 10.1115/1.2181992
16.
Vance
,
J. M.
, and
Dorozhkin
,
D.
,
2010
, “
Constraint-Based Synthesis of Shape-Morphing Structures in Virtual Reality
,”
Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B, No. 44106
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
ASME
, pp.
637
644
.
17.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precision Eng.
,
34
(
2
), pp.
259
270
. 10.1016/j.precisioneng.2009.06.008
18.
Hopkins
,
J. B.
,
2015
, “
A Visualization Approach for Analyzing and Synthesizing Serial Flexure Elements
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031011
. 10.1115/1.4028727
19.
Su
,
H.-J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
. 10.1115/1.3211024
20.
Turkkan
,
O. A.
,
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2018
, “
Rapid Conceptual Design and Analysis of Spatial Flexure Mechanisms
,”
Mech. Mach. Theory
,
121
, pp.
650
668
. 10.1016/j.mechmachtheory.2017.11.025
21.
Zhao
,
K.
, and
Schmiedeler
,
J. P.
,
2015
, “
Using Rigid-Body Mechanism Topologies to Design Shape-Changing Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011014
. 10.1115/1.4030585
22.
Hopkins
,
J. B.
, and
Panas
,
R. M.
,
2013
, “
Design of Flexure-Based Precision Transmission Mechanisms Using Screw Theory
,”
Precision Eng.
,
37
(
2
), pp.
299
307
. 10.1016/j.precisioneng.2012.09.008
23.
Hopkins
,
J. B.
, and
McCalib
,
D.
,
2016
, “
Synthesizing Multi-Axis Flexure Systems With Decoupled Actuators
,”
Precision Eng.
,
46
, pp.
206
220
. 10.1016/j.precisioneng.2016.04.015
24.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Kinetostatic Formulation for Load-Flow Visualization in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021007
. 10.1115/1.4023872
25.
Patiballa
,
S. K.
, and
Krishnan
,
G.
,
2018
, “
Qualitative Analysis and Conceptual Design of Planar Metamaterials With Negative Poisson’s Ratio
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021006
. 10.1115/1.4038977
26.
Patiballa
,
S.
, and
Krishnan
,
G.
,
2017
, “
Qualitative Analysis and Design of Mechanical Metamaterials
,”
Volume 5A: 41st Mechanisms and Robotics Conference
,
Cleveland, OH
,
Aug. 6–9
,
ASME
, p.
V05AT08A002
.
27.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2010
, “
Load-Transmitter Constraint Sets: Part II—A Building Block Method for the Synthesis of Compliant Mechanisms
,”
34th Annual Mechanisms and Robotics Conference, Parts A and B
, Vol.
2
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
ASME
, pp.
577
587
.
28.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
A Metric to Evaluate and Synthesize Distributed Compliant Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011004
. 10.1115/1.4007926
29.
Erdman
,
A. G.
,
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
2001
,
Mechanism Design 1
,
Prentice-Hall
,
Upper Saddle River, NJ
.
30.
Patiballa
,
S. K.
, and
Krishnan
,
G.
,
2017
, “
Estimating Optimized Stress Bounds in Early Stage Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
139
(
6
), p.
062302
. 10.1115/1.4036305
You do not currently have access to this content.