Abstract

Model validation methods have been widely used in engineering design to provide a quantified assessment of the agreement between simulation predictions and experimental observations. For the validation of simulation models with multiple correlated outputs, not only the uncertainty of the responses but also the correlation between them needs to be considered. Most of the existing validation methods for multiple correlated responses focus on the area metric, which only compares the overall area difference between the two cumulative probability distribution curves. The differences in the distributions of the data sets are not fully utilized. In this paper, two covariance-overlap based model validation (COMV) methods are proposed for the validation of multiple correlated responses. The COMV method is used for a single validation site, while the covariance-overlap pooling based model validation (COPMV) method can pool the evidence from different validation sites into a scalar measure to give a global evaluation about the candidate model. The effectiveness and merits of the proposed methods are demonstrated by comparing with three different existing validation methods on three numerical examples and a practical engineering problem of a turbine blade validation example. The influence of sample size and the number of partitions in the proposed methods are also discussed. Results show that the proposed method shows better performance on the uncertainty estimation of different computational models, which is useful for practical engineering design problems with multiple correlated responses.

References

1.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Meth. Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
. 10.1016/j.cma.2011.03.016
2.
Sargent
,
R. G.
,
2013
, “
Verification and Validation of Simulation Models
,”
J. Simul.
,
7
(
1
), pp.
12
24
. 10.1057/jos.2012.20
3.
Sargent
,
R. G.
,
2009
, “
Verification and Validation of Simulation Models
,”
Proceedings of the 2009 Winter Simulation Conference
,
Baltimore, MD
,
Dec. 5–8
, pp.
162
176
.
4.
Oden
,
J. T.
,
Prudencio
,
E. E.
, and
Bauman
,
P. T.
,
2013
, “
Virtual Model Validation of Complex Multiscale Systems: Applications to Nonlinear Elastostatics
,”
Comput. Meth. Appl. Mech. Eng.
,
266
(
Nov.
), pp.
162
184
. 10.1016/j.cma.2013.07.011
5.
Voyles
,
I. T.
, and
Roy
,
C. J.
, “
Evaluation of Model Validation Techniques in the Presence of Aleatory and Epistemic Input Uncertainties
,”
Proceedings 17th AIAA Non-Deterministic Approaches Conference
,
Kissimmee, FL
,
Jan. 5–9
, p.
1374
.
6.
Chen
,
W.
,
Baghdasaryan
,
L.
,
Buranathiti
,
T.
, and
Cao
,
J.
,
2004
, “
Model Validation via Uncertainty Propagation and Data Transformations
,”
AIAA J.
,
42
(
7
), pp.
1406
1415
. 10.2514/1.491
7.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2006
, “
Model Predictive Capability Assessment Under Uncertainty
,”
AIAA J.
,
44
(
10
), pp.
2376
2384
. 10.2514/1.19103
8.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2015
, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
138
(
June
), pp.
194
209
. 10.1016/j.ress.2015.01.023
9.
Moon
,
M.-Y.
,
Choi
,
K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2017
, “
Reliability-Based Design Optimization Using Confidence-Based Model Validation for Insufficient Experimental Data
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031404
. 10.1115/1.4035679
10.
Shen
,
Z.
,
Chen
,
X.
,
He
,
Q.
, and
Zang
,
C. P.
,
2015
, “
Study on Area Metric Based Upon Multiple Correlated System Response Quantities
,” Report No. 0148-7191, SAE Technical Paper.
11.
Li
,
W.
,
Chen
,
S.
,
Jiang
,
Z.
,
Apley
,
D. W.
,
Lu
,
Z.
, and
Chen
,
W.
,
2016
, “
Integrating Bayesian Calibration, Bias Correction, and Machine Learning for the 2014 Sandia Verification and Validation Challenge Problem
,”
J. Verif. Validat. Uncertainty Quantification
,
1
(
1
), p.
011004
. 10.1115/1.4031983
12.
Xiong
,
Y.
,
Chen
,
W.
,
Tsui
,
K.-L.
, and
Apley
,
D. W.
,
2009
, “
A Better Understanding of Model Updating Strategies in Validating Engineering Models
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
15–16
), pp.
1327
1337
. 10.1016/j.cma.2008.11.023
13.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071005
. 10.1115/1.4004223
14.
Ling
,
Y.
,
Mahadevan
,
S. J. R. E.
, and
Safety
,
S.
,
2013
, “
Quantitative Model Validation Techniques: New Insights
,”
Reliab. Eng. Syst. Saf.
,
111
(
Mar.
), pp.
217
231
. 10.1016/j.ress.2012.11.011
15.
Ferson
,
S.
, and
Oberkampf
,
W. L.
,
2009
, “
Validation of Imprecise Probability Models
,”
Int. J. Reliab. Saf.
,
3
(
1–3
), pp.
3
22
. 10.1504/IJRS.2009.026832
16.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Meth. Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
. 10.1016/j.cma.2007.07.030
17.
Hills
,
R. G.
,
2006
, “
Model Validation: Model Parameter and Measurement Uncertainty
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
339
351
. 10.1115/1.2164849
18.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
. 10.1016/j.jcp.2006.03.037
19.
Dowding
,
K. J.
,
Pilch
,
M.
, and
Hills
,
R. G.
,
2008
, “
Formulation of the Thermal Problem
,”
Comput. Meth. Appl. Mech. Eng.
,
197
(
29–32
), pp.
2385
2389
. 10.1016/j.cma.2007.09.029
20.
Li
,
L.
, and
Lu
,
Z.
,
2018
, “
A New Method for Model Validation With Multivariate Output
,”
Reliab. Eng. Syst. Saf.
,
169
(
Jan.
), pp.
579
592
. 10.1016/j.ress.2017.10.005
21.
Zhan
,
Z.
,
Fu
,
Y.
,
Yang
,
R.-J.
, and
Peng
,
Y.
,
2012
, “
Development and Application of a Reliability-Based Multivariate Model Validation Method
,”
Int. J. Vehicle Des.
,
60
(
3/4
), pp.
194
205
. 10.1504/IJVD.2012.050079
22.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2008
, “
Bayesian Validation Assessment of Multivariate Computational Models
,”
J. Appl. Stat.
,
35
(
1
), pp.
49
65
. 10.1080/02664760701683577
23.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2006
, “
Validation of Models With Multivariate Output
,”
Reliab. Eng. Syst. Saf.
,
91
(
8
), pp.
861
871
. 10.1016/j.ress.2005.09.004
24.
Li
,
W.
,
Chen
,
W.
,
Jiang
,
Z.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2014
, “
New Validation Metrics for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
127
(
July
), pp.
1
11
. 10.1016/j.ress.2014.02.002
25.
Genest
,
C.
, and
Rivest
,
L.-P.
,
2001
, “
On the Multivariate Probability Integral Transformation
,”
Stat. Probab. Lett.
,
53
(
4
), pp.
391
399
. 10.1016/S0167-7152(01)00047-5
26.
Zhao
,
L.
,
Lu
,
Z.
,
Yun
,
W.
, and
Wang
,
W.
,
2017
, “
Validation Metric Based on Mahalanobis Distance for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
159
(
Mar.
), pp.
80
89
. 10.1016/j.ress.2016.10.016
27.
De Maesschalck
,
R.
,
Jouan-Rimbaud
,
D.
, and
Massart
,
D. L.
,
2000
, “
The Mahalanobis Distance
,”
Chemom. Intell. Lab. Syst.
,
50
(
1
), pp.
1
18
. 10.1016/S0169-7439(99)00047-7
28.
Kailath
,
T.
,
1967
, “
The Divergence and Bhattacharyya Distance Measures in Signal Selection
,”
IEEE Trans. Commun.
,
15
(
1
), pp.
52
60
. 10.1109/TCOM.1967.1089532
29.
Mahalanobis
,
P. C.
,
1936
, “
On the Generalized Distance in Statistics
,”
Proceedings of the National Institute of Sciences (India)
,
2
(
1
), pp.
49
55
.
30.
Galeano
,
P.
,
Joseph
,
E.
, and
Lillo
,
R. E.
,
2015
, “
The Mahalanobis Distance for Functional Data With Applications to Classification
,”
Technometrics
,
57
(
2
), pp.
281
291
. 10.1080/00401706.2014.902774
31.
Bi
,
S.
,
Prabhu
,
S.
,
Cogan
,
S.
, and
Atamturktur
,
S.
,
2017
, “
Uncertainty Quantification Metrics With Varying Statistical Information in Model Calibration and Validation
,”
AIAA J.
,
55
(
10
), pp.
1
14
.
32.
Bhattacharyya
,
A.
,
1946
, “
On a Measure of Divergence Between Two Multinomial Populations
,”
Sankhyā: Indian J. Stat.
,
7
(
4
), pp.
401
406
.
33.
Perronnin
,
F.
, and
Dance
,
C.
,
2007
, “
Fisher Kernels on Visual Vocabularies for Image Categorization
,”
IEEE Conference on Proceedings Computer Vision and Pattern Recognition, CVPR’07
,
Minneapolis, MN
,
June 17–22
, pp.
1
8
.
34.
Xuan
,
G.
,
Zhu
,
X.
,
Chai
,
P.
,
Zhang
,
Z.
,
Shi
,
Y. Q.
, and
Fu
,
D.
,
2006
, “
Feature Selection Based on the Bhattacharyya Distance
,”
18th International Conference on Proceedings Pattern Recognition, ICPR 2006
,
Hong Kong, China
,
Aug. 20–24
, p.
957
.
35.
Lee
,
C.
, and
Hong
,
D.
,
1997
, “
Feature Extraction Using the Bhattacharyya Distance
,”
1997 IEEE International Conference on Proceedings Systems, Man, and Cybernetics. Computational Cybernetics and Simulation
,
Orlando, FL
,
Oct. 12–15
, pp.
2147
2150
.
36.
Kashyap
,
R.
,
2016
, “
Combining Dimension Reduction, Distance Measures and Covariance
,” Distance Measures and Covariance (
Nov.
25
).
37.
Xi
,
Z.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2012
, “
Model Validation Metric and Model Bias Characterization for Dynamic System Responses Under Uncertainty
,”
Proceedings ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
1249
1260
.
38.
Quesenberry
,
C. P.
,
2006
, “Probability Integral Transformations,”
Encyclopedia of Statistical Sciences
, Vol.
10
,
S.
Kotz
,
C. B.
Read
,
N.
Balakrishnan
, and
B.
Vidakovic
, eds.,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
39.
Iman
,
R. L.
,
2008
, “
Latin Hypercube Sampling
,” Wiley Stats Ref: Statistics Reference Online.
40.
Marinho
,
M. A.
,
Antreich
,
F.
,
da Costa
,
J. P. C.
, and
Nossek
,
J. A.
,
2014
, “
A Signal Adaptive Array Interpolation Approach With Reduced Transformation Bias for DOA Estimation of Highly Correlated Signals
,”
2014 IEEE International Conference on Proceedings Acoustics, Speech and Signal Processing (ICASSP)
, pp.
2272
2276
.
41.
Wang
,
Y.
, and
Sui
,
L.
,
2012
,
Design of Experiment and MATLAB Data Analysis
,
Tsinghua University Press
,
Beijing
.
42.
McKeand
,
A. M.
,
Gorguluarslan
,
R. M.
, and
Choi
,
S.-K.
,
2018
, “
A Stochastic Approach for Performance Prediction of Aircraft Engine Components Under Manufacturing Uncertainty
,”
Proceedings ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, p.
V01BT02A045
.
You do not currently have access to this content.