Abstract

A highly accurate digital-twin spiral bevel gear or hypoid gear is often required for dynamic analysis or stress analysis for gear transmission. However, a highly accurate digital-twin solid model is not always available because the final hypoid gear is completed by the gear manufacturer. This study constructs a digital-twin from a sample hypoid gear. The tooth surface of sample gear is digitized as topographical grids using a coordinate measuring machine (CMM) or a gear measurement center. The geometric parameters (the surface position vector, the normal vector, the principal curvatures, and the corresponding principal directions) for the measured tooth surface (MTS) are then extracted using numerical differential geometry (NDG). The machine settings and the cutter parameters for the sample hypoid gear are obtained by minimizing the topographical error between the replicated digital-twin and the sample gear using optimization software. The initial estimation for the machine settings and the cutter parameters is calculated using an explicit form of the modified-roll motion (MRM), which decreases numerical divergence and time that is required for calculation. The machine settings, the cutting tool parameters, and the auxiliary flank modification (AFM) motion are used as the design variables. A numerical example is presented to verify the proposed methodology. The numerical results show that the replicated digital-twin that is developed using the proposed method is sufficiently accurate for industrial applications.

References

1.
Grieves
,
M. W.
,
2019
,
Complex Systems Engineering: Theory and Practice
,
S.
Flumerfelt
,
K. G.
Schwartz
,
D.
Mavris
, and
S.
Briceno
, eds.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
175
200
.
2.
Brumm
,
M.
, and
Müller
,
H.
,
2018
, “
Cyber Physical Gear Production System: A Vision of Industry 4.0 Gear Production
,”
Gear Technol
.,
January/February
, pp.
50
54
.
3.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Method of Synthesis and Analysis for Hypoid Gear-Drives of “Formate” and “Helixform”—Part 1, 2, and 3
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
83
110
. 10.1115/1.3254838
4.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Lundy
,
M.
, and
Heine
,
C.
,
1988
, “
Determination of Settings of a Tilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears
,”
ASME J. Mech. Trans. Autom.
,
110
(
4
), pp.
495
500
. 10.1115/1.3258950
5.
Wang
,
X. C.
, and
Ghosh
,
S. K.
,
1994
,
Advanced Theories of Hypoid Gears
,
Elsevier Science B.V.
,
Amsterdam, Netherlands
.
6.
Lin
,
C. Y.
,
Tsay
,
C. B.
, and
Fong
,
Z. H.
,
1997
, “
Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method
,”
Mech. Mach. Theory
,
32
(
2
), pp.
121
136
. 10.1016/S0094-114X(96)00043-2
7.
Fong
,
Z. H.
,
2000
, “
Mathematical Model of Universal Hypoid Generator With Supplemental Kinematic Flank Correction Motions
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
136
142
. 10.1115/1.533552
8.
Shih
,
Y. P.
,
Fong
,
Z. H.
, and
Lin
,
C. Y.
,
2007
, “
Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
38
47
. 10.1115/1.2359471
9.
Shih
,
Y. P.
,
Sun
,
Z. H.
, and
Lai
,
K. L.
,
2017
, “
A Flank Correction Face-Milling Method for Bevel Gears Using a Five-Axis CNC Machine
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3636
3652
. 10.1007/s00170-017-0032-8
10.
Simon
,
V.
,
2009
, “
Head-Cutter for Optimal Tooth Modifications in Spiral Bevel Gears
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1420
1435
. 10.1016/j.mechmachtheory.2008.11.007
11.
Simon
,
V.
,
2014
, “
Optimization of Face-Hobbed Hypoid Gears
,”
Mech. Mach. Theory
,
77
, pp.
164
181
. 10.1016/j.mechmachtheory.2014.02.003
12.
Simon
,
V.
,
2014
, “
Optimal Machine-Tool Settings for the Manufacture of Face-Hobbed Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081004
. 10.1115/1.4027635
13.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Kieffer
,
J.
, and
Handschuh
,
R. F.
,
1991
, “
Identification and Minimization of Deviations of Real Gear Tooth Surfaces
,”
ASME J. Mech. Des.
,
113
(
1
), pp.
55
62
. 10.1115/1.2912751
14.
Litvin
,
F. L.
,
Kuan
,
C.
,
Wang
,
J. C.
,
Handschuh
,
R. F.
,
Masseth
,
J.
, and
Maruyama
,
N.
,
1993
, “
Minimization of Derivations of Gear Real Tooth Surfaces Determined by Coordinate Measurements
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
995
1001
. 10.1115/1.2919298
15.
Zhang
,
Y.
,
Litvin
,
F. L.
,
Maruyama
,
N.
,
Takeda
,
R.
, and
Sugimoto
,
M.
,
1994
, “
Computerized Analysis of Meshing and Contact of Gear Real Tooth Surfaces
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
677
682
. 10.1115/1.2919435
16.
Kin
,
V.
,
1994
, “
Computerized Analysis of Gear Meshing Based on Coordinate Measurement Data
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
738
744
. 10.1115/1.2919444
17.
Gosselin
,
C.
,
Nonaka
,
T.
,
Shiono
,
Y.
,
Kubo
,
A.
, and
Tatsuno
,
T.
,
1998
, “
Identification of the Machine Settings of Real Hypoid Gear Tooth Surfaces
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
429
440
. 10.1115/1.2829170
18.
Liu
,
G.
,
Chang
,
K.
, and
Liu
,
Z.
,
2013
, “
Reverse Engineering of Machine-Tool Settings With Modified Roll for Spiral Bevel Pinions
,”
Chin. J. Mech. Eng.
,
26
(
3
), pp.
573
584
. 10.3901/CJME.2013.03.573
19.
Liu
,
G. L.
,
Li
,
D. G.
, and
Wang
,
L. Y.
,
2015
, “
Reconstruction of Real Tooth Surfaces of Spiral Bevel Pinions With Modified Offset
,”
Inverse Prob. Sci. Eng.
,
23
(
2
), pp.
214
234
. 10.1080/17415977.2014.890613
20.
Lin
,
C. H.
, and
Fong
,
Z. H.
,
2015
, “
Numerical Tooth Contact Analysis of a Bevel Gear Set by Using Measured Tooth Geometry Data
,”
Mech. Mach. Theory
,
84
, pp.
1
24
. 10.1016/j.mechmachtheory.2014.09.010
21.
Bae
,
I.
, and
Schirru
,
V.
,
2015
, “
An Approach to Pairing Bevel Gears From Conventional Cutting Machine With Gears Produced on 5-Axis Milling Machine
,”
Gear Technol.
, pp.
60
65
.
22.
Du
,
J.
, and
Fang
,
Z.
,
2016
, “
An Active Tooth Surface Design Methodology for Face-Hobbed Hypoid Gears Based on Measuring Coordinates
,”
Mech. Mach. Theory
,
99
, pp.
140
154
. 10.1016/j.mechmachtheory.2016.01.002
23.
Knupp
,
P.
, and
Steinberg
,
S.
,
1993
,
Fundamentals of Grid Generation
,
CRC Press
,
Boca Raton, FL
.
24.
Phillips
,
G. M.
, and
Taylor
,
P. J.
,
1996
,
Theory and Applications of Numerical Analysis
, 2nd ed.,
Elsevier Academic Press
,
London, UK
.
25.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.