Abstract

This paper presents an intuitive approach for mobility analysis of thin-panel origamis based on a coplanar 2-twist screw system, which consists of a pair of parallel/concurrent line vectors. In this study, we first proved that in any thin-panel origami, the allowable instantaneous mobility for any two facets connected to a third one can be described by a coplanar 2-twist screw system because this mobility is generated by two coplanar creases in the third facet. Second, the mobility of the basic origami units with a single facet loop was analyzed by using this coplanar 2-twist screw system. Third, the mobility analysis approach was extended to analyze the mobility of other planar/circular arraying origami patterns with multiple facet loops; typical origami patterns such as leaf-fold, Miura-ori were subjected to this analysis process. Furthermore, we proved that the proposed approach can be applied to the mobility analysis of complicated origamis; this approach proved to be considerably more intuitive than the traditional approach for mobility analysis.

References

1.
Z
,
Y.
,
2014
, “
Folding Structures Out of Flat Materials
,”
Science
,
345
(
6197
), pp.
623
624
. 10.1126/science.1257841
2.
Dai
,
J.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
. 10.1115/1.2829470
3.
Marras
,
A. E.
,
Zhou
,
L.
,
Su
,
H. J.
, and
Castro
,
C. E.
,
2015
, “
Programmable Motion of DNA Origami Mechanisms
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
3
), pp.
713
718
. 10.1073/pnas.1408869112
4.
Lee
,
T. U.
, and
Gattas
,
J. M.
,
2016
, “
Geometric Design and Construction of Structurally Stabilized Accordion Shelters
,”
ASME J. Mech. Robot.
,
8
(
3
), p.
031009
. 10.1115/1.4032441
5.
Ario
,
I.
,
Nakazawa
,
M.
,
Tanaka
,
Y.
,
Tanikura
,
I.
, and
Ono
,
S.
,
2013
, “
Development of a Prototype Deployable Bridge Based on Origami Skill
,”
Automat. Constr.
,
32
, pp.
104
111
. 10.1016/j.autcon.2013.01.012
6.
Del Grosso
,
A. E.
, and
Basso
,
P.
,
2010
, “
Adaptive Building Skin Structures
,”
Smart Mater. Struct.
,
19
(
12
), p.
124011
. 10.1088/0964-1726/19/12/124011
7.
Kim
,
S. J.
,
Lee
,
D. Y.
,
Jung
,
G. P.
, and
Cho
,
K. J.
,
2018
, “
An Origami-Inspired, Self-Locking Robotic Arm That Can be Folded Flat
,”
Sci. Robotics
,
3
(
16
), p.
eaar2915
. 10.1126/scirobotics.aar2915
8.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J.
,
2016
, “
A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Robot
,
32
(
3
), pp.
484
498
. 10.1109/TRO.2016.2539373
9.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
430
438
. 10.1109/TMECH.2012.2210239
10.
Lei
,
D.
,
Marras
,
A. E.
,
Liu
,
J.
,
Huang
,
C. M.
,
Zhou
,
L.
,
Castro
,
C. E.
,
Su
,
H. J.
, and
Ren
,
G.
,
2018
, “
Three-dimensional Structural Dynamics of DNA Origami Bennett Linkages Using Individual-Particle Electron Tomography
,”
Nat. Commun.
,
9
(
1
), p.
592
. 10.1038/s41467-018-03018-0
11.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2016
, “
Self-deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng., A
,
419
(
1
), pp.
131
137
.
12.
Randall
,
C. L.
,
Gultepe
,
E.
, and
Gracias
,
D. H.
,
2012
, “
Self-folding Devices and Materials for Biomedical Applications
,”
Trends Biotechnol.
,
30
(
3
), pp.
138
146
. 10.1016/j.tibtech.2011.06.013
13.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
. 10.1115/1.4032973
14.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
. 10.1115/1.4025372
15.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
An Approach to Designing Deployable Mechanisms Based on Rigid Modified Origami Flashers
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082301
. 10.1115/1.4040178
16.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
. 10.1016/j.mechmachtheory.2004.12.014
17.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
. 10.1115/1.1901708
18.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
19.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
20.
Li
,
B.
,
Huang
,
H.
, and
Deng
,
Z.
,
2015
, “
Mobility Analysis of Symmetric Deployable Mechanisms Involved in a Coplanar 2-Twist Screw System
,”
ASME J. Mech. Robot.
,
8
(
1
), p.
011007
. 10.1115/1.4030373
21.
Hervé
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
. 10.1016/S0094-114X(98)00051-2
22.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
. 10.1126/science.aab2870
23.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
. 10.1098/rspa.2009.0625
24.
Tachi
,
T.
,
2016
, “
Designing Rigidly Foldable Horns Using Bricard’s Octahedron
,”
ASME J. Mech. Robot.
,
8
(
3
), p.
031008
. 10.1115/1.4031717
25.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2015
, “
Constraint Analysis and Redundancy of Planar Closed Loop Double Chain Linkages
,”
Adv. Mech. Eng.
,
6
, p.
635423
. 10.1155/2014/635423
26.
Cai
,
J.
,
Qian
,
Z.
,
Jiang
,
C.
,
Feng
,
J.
, and
Xu
,
Y.
,
2016
, “
Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
064502
. 10.1115/1.4034578
27.
Liu
,
X.
,
Gattas
,
J. M.
, and
Chen
,
Y.
,
2016
, “
One-DOF Superimposed Rigid Origami With Multiple States
,”
Sci. Rep.
,
6
(
1
), p.
36883
. 10.1038/srep36883
28.
Liu
,
S.
,
Chen
,
Y.
, and
Lu
,
G.
,
2013
, “
The Rigid Origami Patterns for Flat Surface
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
(IDETC/CIE)
,
Portland, OR,
Aug. 4–7
, p.
V06BT07A039
.
29.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150846
. 10.1098/rspa.2015.0846
You do not currently have access to this content.