Abstract

A lattice structure is defined by a network of interconnected structural members whose architecture exhibits some degree of regularity. Although the overall architecture of a lattice may contain many members, its generation can be a simple process in which a unit cell composed of a small amount of members, in comparison to the overall structure, is mapped throughout the Euclidean space. However, finding the right lattice architecture in a vast search space that customizes the behavior of a design for a given purpose, subject to mechanical and manufacturing constraints, is a challenging task. In response to this challenge, this work investigates a Voronoi diagram-based tessellation of a body-centered cubic cell for applications in structural synthesis and computational design of 3D lattice structures. This work contributes by exploring how the Voronoi tessellation can be utilized to parametrically represent the architecture of a lattice structure and what the implications of the parametrization are on the optimization, for which a global direct search method is used. The work considers two benchmark studies, a cubic and a cantilever lattice structure, as well as the effect of isotropic and anisotropic material property models, stemming from applications to additive manufacturing. The results show that the proposed parameterization generates complex search spaces using only four variables and includes four different lattice structure types, a Kelvin cell, a hexagonal lattice, a diamond-core lattice structure, and a box-boom type lattice structure. The global direct search method applied is shown to be effective considering two different material property models from an additive manufacturing (AM) process.

References

1.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Structured Materials: Past, Present and Future
,”
Proc. R. Soc. A
,
466
(
2121
), pp.
2495
2516
. 10.1098/rspa.2010.0215
2.
Öhrström
,
L.
, and
Larsson
,
K.
,
2005
,
Molecule-based Materials: The Structural Network Approach
,
Elsevier
,
New York
.
3.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
. 10.1002/adma.201701850
4.
Rosen
,
D. W.
,
2016
, “
A Review of Synthesis Methods for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
11
(
4
), pp.
305
317
. 10.1080/17452759.2016.1240208
5.
Mueller
,
J.
,
Matlack
,
K. H.
,
Shea
,
K.
, and
Daraio
,
C.
,
2019
, “
Energy Absorption Properties of Periodic and Stochastic 3d Lattice Materials
,”
Adv. Theory Simul.
,
2
(
10
), p.
1900081
. 10.1002/adts.201900081
6.
Begley
,
M. R.
, and
Zok
,
F. W.
,
2014
, “
Optimal Material Properties for Mitigating Brain Injury During Head Impact
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031014
. 10.1115/1.4024992
7.
KrzeminskI
,
D. E.
,
Goetz
,
J. T.
,
Janisse
,
A. P.
,
Lippa
,
N. M.
,
Gould
,
T. E.
,
RawlinS
,
J. W.
, and
Piland
,
S. G.
,
2011
, “
Investigation of Linear Impact Energy Management and Product Claims of a Novel American Football Helmet Liner Component
,”
Sports Technol.
,
4
(
1–2
), pp.
65
76
. 10.1080/19346182.2012.691508
8.
Zadpoor
,
A. A.
,
2016
, “
Mechanical Meta-Materials
,”
Mater. Horizons
,
3
(
5
), pp.
371
381
. 10.1039/C6MH00065G
9.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
. 10.1115/1.2013289
10.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
. 10.1115/1.4037305
11.
Dorn
,
W.
,
Gomory
,
R.
, and
Greenberg
,
M.
,
1964
, “
Automatic Design of Optimal Structures
,”
J. de Mecanique
,
3
, pp.
25
52
.
12.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
217
237
. 10.1007/s00158-007-0217-0
13.
Ning
,
X.
, and
Pellegrino
,
S.
,
2012
, “
Design of Lightweight Structural Components for Direct Digital Manufacturing
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
21
.
14.
Nessi
,
A.
, and
Stanković
,
T.
,
2018
, “
Topology, Shape, and Size Optimization of Additively Manufactured Lattice Structures Based on the Superformula
,”
ASME-DETC
,
Quebec City, Canada
,
Aug. 26–29
, p. V02AT03A042.
15.
Verma
,
C. S.
,
Rankouhi
,
B.
, and
Suresh
,
K.
,
2020
, “
A Combinatorial Approach for Constructing Lattice Structures
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041404
. 10.1115/1.4044521
16.
Mohammed
,
M. I.
, and
Gibson
,
I.
,
2018
, “
Design of Three-Dimensional, Triply Periodic Unit Cell Scaffold Structures for Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071701
. 10.1115/1.4040164
17.
Wu
,
J.
,
Wang
,
W.
, and
Gao
,
X.
,
2019
, “
Design and Optimization of Conforming Lattice Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
2019
, p.
1
. 10.1109/TVCG.2019.2938946
18.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2018
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
. 10.1002/nme.5575
19.
Han
,
Y.
, and
Lu
,
W. F.
,
2018
, “
A Novel Design Method for Nonuniform Lattice Structures Based on Topology Optimization
,”
ASME J. Mech. Des.
,
140
(
9
), p.
091403
. 10.1115/1.4040546
20.
Zhang
,
W.
,
Dai
,
G.
,
Wang
,
F.
,
Sun
,
S.
, and
Bassir
,
H.
,
2007
, “
Using Strain Energy-Based Prediction of Effective Elastic Properties in Topology Optimization of Material Microstructures
,”
Acta Mech. Sin.
,
23
(
1
), pp.
77
89
. 10.1007/s10409-006-0045-2
21.
Diaz
,
A. R.
, and
Sigmund
,
O.
,
2010
, “
A Topology Optimization Method for Design of Negative Permeability Metamaterials
,”
Struct. Multidiscipl. Optim.
,
41
(
2
), pp.
163
177
. 10.1007/s00158-009-0416-y
22.
Zhou
,
S.
,
Li
,
W.
,
Chen
,
Y.
,
Sun
,
G.
, and
Li
,
Q.
,
2011
, “
Topology Optimization for Negative Permeability Metamaterials Using Level-Set Algorithm
,”
Acta Mater.
,
59
(
7
), pp.
2624
2636
. 10.1016/j.actamat.2010.12.049
23.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-Material Negative Poisson’s Ratio Metamaterials Using a Reconciled Level Set Method
,”
Comput. Aided Des.
,
83
, pp.
15
32
. 10.1016/j.cad.2016.09.009
24.
Tamburrino
,
F.
,
Graziosi
,
S.
, and
Bordegoni
,
M.
,
2018
, “
The Design Process of Additively Manufactured Mesoscale Lattice Structures: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
040801
. 10.1115/1.4040131
25.
Martínez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
12
. 10.1145/2897824.2925922
26.
Lewis
,
R. M.
, and
Torczon
,
V.
,
1999
, “
Pattern Search Algorithms for Bound Constrained Minimization
,”
SIAM J. Optim.
,
9
(
4
), pp.
1082
1099
. 10.1137/S1052623496300507
27.
Torczon
,
V.
,
1997
, “
On the Convergence of Pattern Search Algorithms
,”
SIAM J. Optim.
,
7
(
1
), pp.
1
25
. 10.1137/S1052623493250780
28.
Mladenović
,
N.
, and
Hansen
,
P.
,
1997
, “
Variable Neighborhood Search
,”
Comput. Oper. Res.
,
24
(
11
), pp.
1097
1100
. 10.1016/S0305-0548(97)00031-2
29.
Pottmann
,
H.
,
Jiang
,
C.
,
Höbinger
,
M.
,
Wang
,
J.
,
Bompas
,
P.
, and
Wallner
,
J.
,
2015
, “
Cell Packing Structures
,”
Comput. Aided Des.
,
60
, pp.
70
83
. 10.1016/j.cad.2014.02.009
30.
Gilbert
,
M.
, and
Tyas
,
A.
,
2003
, “
Layout Optimization of Large-Scale Pin-Jointed Frames
,”
Eng. Comput.
,
20
(
8
), pp.
1044
1064
. 10.1108/02644400310503017
31.
Sokół
,
T.
, and
Rozvany
,
G. I. N.
,
2013
, “
On the Adaptive Ground Structure Approach for Multi-Load Truss Topology Optimization
,”
Tenth World Congress on Structural and Multidisciplinary Optimization
,
Orlando, FL
, pp.
20
24
.
32.
Schwarz
,
J.
,
Chen
,
T.
,
Shea
,
K.
, and
Stanković
,
T.
,
2018
, “
Efficient Size and Shape Optimization of Truss Structures Subject to Stress and Local Buckling Constraints Using Sequential Linear Programming
,”
Struct. Multidiscip. Optim.
,
58
(
1
), pp.
171
184
. 10.1007/s00158-017-1885-z
33.
He
,
L.
, and
Gilbert
,
M.
,
2015
, “
Rationalization of Trusses Generated via Layout Optimization
,”
Struct. Multidiscip. Optim.
,
52
(
4
), pp.
677
694
. 10.1007/s00158-015-1260-x
34.
Descamps
,
B.
, and
Coelho
,
R. F.
,
2013
, “
A Lower-Bound Formulation for the Geometry and Topology Optimization of Truss Structures Under Multiple Loading
,”
Struct. Multidiscip. Optim.
,
48
(
1
), pp.
49
58
. 10.1007/s00158-012-0876-3
35.
Gielis
,
J.
,
2003
, “
A Generic Geometric Transformation That Unifies a Wide Range of Natural and Abstract Shapes
,”
Am. J. Bot.
,
90
(
3
), pp.
333
338
. 10.3732/ajb.90.3.333
36.
Preen
,
R. J.
, and
Bull
,
L.
,
2013
, “
Towards the Evolution of Novel Vertical-Axis Wind Turbines
,”
13th UK Workshop on Computational Intelligence (UKCI)
, pp.
74
81
.
37.
Chang
,
P. S.
, and
Rosen
,
D. W.
,
2013
, “
The Size Matching and Scaling Method: A Synthesis Method for the Design of Mesoscale Cellular Structures
,”
Int. J. Comput. Integr. Manuf.
,
26
(
10
), pp.
907
927
. 10.1080/0951192X.2011.650880
38.
Chu
,
J.
,
Engelbrecht
,
S.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2010
, “
A Comparison of Synthesis Methods for Cellular Structures With Application to Additive Manufacturing
,”
Rapid Prototyping J.
,
16
(
4
), pp.
275
283
. 10.1108/13552541011049298
39.
Nguyen
,
J.
,
Park
,
S.
, and
Rosen
,
D. W.
,
2013
, “
Heuristic Optimization Method for Cellular Structure Design of Light Weight Components
,”
Int. J. Precis. Eng. Manuf.
,
14
(
6
), pp.
1071
1078
. 10.1007/s12541-013-0144-5
40.
Carfrae
,
T.
,
2006
, “
Engineering the Water Cube
,”
Architecture Australia
,
95
(
4
), pp.
103
105
.
41.
Peters
,
B.
,
2013
, “
Computation Works: The Building of Algorithmic Thought
,”
Architectural Des.
,
83
(
2
), pp.
8
15
. 10.1002/ad.1545
42.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
. 10.1115/1.3593409
43.
Shea
,
K.
, and
Smith
,
I. F.
,
2006
, “
Improving Full-Scale Transmission Tower Design Through Topology and Shape Optimization
,”
J. Struct. Eng.
,
132
(
5
), pp.
781
790
. 10.1061/(ASCE)0733-9445(2006)132:5(781)
44.
Shea
,
K.
, and
Cagan
,
J.
,
1997
, “
Innovative Dome Design: Applying Geodesic Patterns With Shape Annealing. Artificial Intelligence for Engineering
,”
Des. Anal. Manuf.
,
11
(
5
), pp.
379
394
.
45.
Shea
,
K.
,
Aish
,
R.
, and
Gourtovaia
,
M.
,
2005
, “
Towards Integrated Performance-Driven Generative Design Tools
,”
Automat. Constr.
,
14
(
2
), pp.
253
264
. 10.1016/j.autcon.2004.07.002
46.
Schumacher
,
C.
,
Marschner
,
S.
,
Cross
,
M.
, and
Thomaszewski
,
B.
,
2018
, “
Mechanical Characterization of Structured Sheet Materials
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
15
. 10.1145/3197517.3201278
47.
Mueller
,
J.
,
Shea
,
K.
, and
Daraio
,
C.
,
2015
, “
Mechanical Properties of Parts Fabricated With Inkjet 3D Printing Through Efficient Experimental Design
,”
Mater. Des.
,
86
, pp.
902
912
. 10.1016/j.matdes.2015.07.129
48.
Stankovic
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
The Effect of Anisotropy on the Optimization of Additively Manufactured Lattice Structures
,”
Addit. Manuf.
,
17
, pp.
67
76
. 10.1016/j.addma.2017.07.004
49.
Audet
,
C.
, and
Hare
,
W.
,
2017
,
Derivative-Free and Blackbox Optimization
,
Springer
,
Berlin
.
50.
Currie
,
J.
, and
Wilson
,
D. I.
,
2012
, “
OPTI, Lowering the Barrier Between Open Source Optimizers and the Industrial Matlab User
,”
Foundations of Computer-Aided Process Operations
, Vol.
24
, p.
32
.
51.
Snee
,
R. D.
,
1971
, “
Design and Analysis of Mixture Experiments
,”
J. Qual. Technol.
,
3
(
4
), pp.
159
169
. 10.1080/00224065.1971.11980489
52.
Pellerin
,
J.
,
Johnen
,
A.
,
Verhetsel
,
K.
, and
Remacle
,
J. F.
,
2018
, “
Identifying Combinations of Tetrahedra Into Hexahedra: A Vertex Based Strategy
,”
Comput. Aided Des.
,
105
, pp.
1
10
. 10.1016/j.cad.2018.05.004
53.
Verhetsel
,
K.
,
Pellerin
,
J.
, and
Remacle
,
J. F.
,
2018
, “A 44-Element Mesh of Schneiders’ Pyramid,”
International Meshing Roundtable
,
Springer
,
Cham
, pp.
73
87
.
54.
Wang
,
Y.
,
Zhang
,
L.
,
Daynes
,
S.
,
Zhang
,
H.
,
Feih
,
S.
, and
Wang
,
M. Y.
,
2018
, “
Design of Graded Lattice Structure With Optimized Mesostructures for Additive Manufacturing
,”
Mater. Des.
,
142
, pp.
114
123
. 10.1016/j.matdes.2018.01.011
55.
Mueller
,
J.
, and
Shea
,
K.
,
2018
, “
Buckling, Build Orientation, and Scaling Effects in 3D Printed Lattices
,”
Mater. Today Commun.
,
17
, pp.
69
75
. 10.1016/j.mtcomm.2018.08.013
56.
Liu
,
L.
,
Kamm
,
P.
,
García-Moreno
,
F.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-Dimensional Metallic Lattices: The Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids
,
107
, pp.
160
184
. 10.1016/j.jmps.2017.07.003
You do not currently have access to this content.