Abstract

To further reduce the computational expense of metamodel-based design optimization (MBDO), a novel sequential radial basis function (RBF)-based optimization method using virtual sample generation (SRBF-VSG) is proposed. Different from the conventional MBDO methods with pure expensive samples, SRBF-VSG employs the virtual sample generation mechanism to improve the optimization efficiency. In the proposed method, a least squares support vector machine (LS-SVM) classifier is trained based on expensive real samples considering the objective and constraint violation. The classifier is used to determine virtual points without evaluating any expensive simulations. The virtual samples are then generated by combining these virtual points and their Kriging responses. Expensive real samples and cheap virtual samples are used to refine the objective RBF metamodel for efficient space exploration. Several numerical benchmarks are tested to demonstrate the optimization capability of SRBF-VSG. The comparison results indicate that SRBF-VSG generally outperforms the competitive MBDO methods in terms of global convergence, efficiency, and robustness, which illustrates the effectiveness of virtual sample generation. Finally, SRBF-VSG is applied to an airfoil aerodynamic optimization problem and a small Earth observation satellite multidisciplinary design optimization problem to demonstrate its practicality for solving real-world optimization problems.

References

1.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
. 10.1115/1.2429697
2.
Duan
,
X.
,
Wang
,
G. G.
,
Kang
,
X.
,
Niu
,
Q.
,
Naterer
,
G.
, and
Peng
,
Q.
,
2009
, “
Performance Study of Mode-Pursuing Sampling Method
,”
Eng. Optimiz.
,
41
(
1
), pp.
1
21
. 10.1080/03052150802345995
3.
Long
,
T.
,
Liu
,
J.
,
Wang
,
G. G.
,
Liu
,
L.
,
Shi
,
R. H.
, and
Guo
,
X. S.
,
2016
, “
Discuss on Approximate Optimization Strategies Using Design of Computer Experiments and Metamodels for Flight Vehicle Design
,”
Chin. J. Mech. Eng-En.
,
52
(
14
), pp.
79
105
. 10.3901/JME.2016.14.079
4.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. O.
,
23
(
1
), pp.
1
13
. 10.1007/s00158-001-0160-4
5.
Cressie
,
N.
,
1990
, “
The Origins of Kriging
,”
Math Geol
,
22
(
3
), pp.
239
252
. 10.1007/BF00889887
6.
Buhmann
,
M. D.
,
2003
,
Radial Basis Functions: Theory and Implementations
(Process of Cambridge Monographs on Applied and Computational Mathematics),
Cambrige University
,
Cambridge, UK
.
7.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
8.
Viana
,
F. A.
,
Haftka
,
R. T.
, and
Watson
,
L. T.
,
2013
, “
Efficient Global Optimization Algorithm Assisted by Multiple Surrogate Techniques
,”
J. Global Optimiz.
,
56
(
2
), pp.
669
689
. 10.1007/s10898-012-9892-5
9.
Sasena
,
M. J.
,
Parkinson
,
M.
,
Reed
,
M. P.
,
Papalambros
,
P. Y.
, and
Goovaerts
,
P.
,
2005
, “
Improving an Ergonomics Testing Procedure Via Approximation-Based Adaptive Experimental Design
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1006
1013
. 10.1115/1.1906247
10.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G. G.
,
2004
, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
Eng. Optimiz.
,
36
(
4
), pp.
419
438
. 10.1080/03052150410001686486
11.
Cheng
,
G. H.
,
Younis
,
A.
,
Hajikolaei
,
K. H.
, and
Wang
,
G. G.
,
2015
, “
Trust Region Based Mode Pursuing Sampling Method for Global Optimization of High Dimensional Design Problems
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021407
. 10.1115/1.4029219
12.
Kazemi
,
M.
,
Wang
,
G. G.
,
Rahnamayan
,
S.
, and
Gupta
,
K.
,
2011
, “
Metamodel-Based Optimization for Problems With Expensive Objective and Constraint Functions
,”
ASME J. Mech. Des.
,
133
(
1
), p.
014505
. 10.1115/1.4003035
13.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
,
Yang
,
P.
, and
Shao
,
X.
,
2017
, “
A Multi-Point Sampling Method Based on Kriging for Global Optimization
,”
Struct. Multidiscip. O.
,
56
(
1
), pp.
71
88
. 10.1007/s00158-017-1648-x
14.
Wang
,
G. G.
,
Dong
,
Z.
, and
Aitchison
,
P.
,
2001
, “
Adaptive Response Surface Method—A Global Optimization Scheme for Approximation-Based Design Problems
,”
Eng. Optimiz.
,
33
(
6
), pp.
707
734
. 10.1080/03052150108940940
15.
Long
,
T.
,
Li
,
X.
,
Shi
,
R.
,
Liu
,
J.
,
Guo
,
X.
, and
Liu
,
L.
,
2017
, “
Gradient-Free Trust-Region-Based Adaptive Response Surface Method for Expensive Aircraft Optimization
,”
AIAA J.
,
56
(
2
), pp.
862
873
. 10.2514/1.J054779
16.
Long
,
T.
,
Wu
,
D.
,
Guo
,
X. S.
,
Wang
,
G. G.
, and
Liu
,
L.
,
2015
, “
Efficient Adaptive Response Surface Method Using Intelligent Space Exploration Strategy
,”
Struct. Multidiscip. O.
,
51
(
6
), pp.
1335
1362
. 10.1007/s00158-014-1219-3
17.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
, and
Liu
,
J.
,
2016
, “
Sequential Radial Basis Function Using Support Vector Machine for Expensive Design Optimization
,”
AIAA J.
,
55
(
1
), pp.
214
227
. 10.2514/1.J054832
18.
Wu
,
D.
,
Hajikolaei
,
K. H.
, and
Wang
,
G. G.
,
2018
, “
Employing Partial Metamodels for Optimization With Scarce Samples
,”
Struct. Multidiscip. O.
,
57
(
3
), pp.
1329
1343
. 10.1007/s00158-017-1815-0
19.
Rouhi
,
M.
,
Ghayoor
,
H.
,
Hoa
,
S. V.
, and
Hojjati
,
M.
,
2017
, “
Computational Efficiency and Accuracy of Multi-Step Design Optimization Method for Variable Stiffness Composite Structures
,”
Thin Wall. Struct.
,
113
, pp.
136
143
. 10.1016/j.tws.2017.01.019
20.
Li
,
E.
,
Wang
,
H.
, and
Ye
,
F.
,
2016
, “
Two-Level Multi-Surrogate Assisted Optimization Method for High Dimensional Nonlinear Problems
,”
Appl. Soft Comput.
,
46
, pp.
26
36
. 10.1016/j.asoc.2016.04.035
21.
Ran
,
R.
,
Li
,
W.
, and
Li
,
Y.
,
2018
, “
A Two-Level Global Optimization Method Based on Hybrid Metamodel for Expensive Problems
,”
Adv. Mech. Eng.
,
10
(
4
), pp.
1
14
. 10.1177/1687814018769542
22.
Regis
,
R. G.
,
2011
, “
Stochastic Radial Basis Function Algorithms for Large-Scale Optimization Involving Expensive Black-Box Objective and Constraint Functions
,”
Comput. Oper. Res.
,
38
(
5
), pp.
837
853
. 10.1016/j.cor.2010.09.013
23.
Regis
,
R. G.
,
2014
, “
Constrained Optimization by Radial Basis Function Interpolation for High-Dimensional Expensive Black-Box Problems With Infeasible Initial Points
,”
Eng. Optimiz.
,
46
(
2
), pp.
218
243
. 10.1080/0305215X.2013.765000
24.
Li
,
Y.
,
Wu
,
Y.
,
Zhao
,
J.
, and
Chen
,
L.
,
2017
, “
A Kriging-Based Constrained Global Optimization Algorithm for Expensive Black-Box Functions With Infeasible Initial Points
,”
J. Global Optim.
,
67
(
1
), pp.
343
366
. 10.1007/s10898-016-0455-z
25.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2019
, “
Filter-based Sequential Radial Basis Function Method for Spacecraft Multidisciplinary Design Optimization
,”
AIAA J.
,
57
(
3
), pp.
1019
1031
. 10.2514/1.J057403
26.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2019
, “
Filter-Based Adaptive Kriging Method for Black-Box Optimization Problems With Expensive Objective and Constraints
,”
Comput. Method Appl. M.
,
347
, pp.
782
805
. 10.1016/j.cma.2018.12.026
27.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. Roy. Soc. A Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
. 10.1098/rspa.2007.1900
28.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K.-L.
,
2008
, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
ASME J. Mech. Des.
,
130
(
11
), p.
111401
. 10.1115/1.2976449
29.
Hanyu
,
Y.
,
Clemens
,
M.
, and
Seifert
,
J.
,
2015
, “
Dimension Reduction for the Design Optimization of Large Scale High Voltage Devices Using Co-Kriging Surrogate Modeling
,”
IEEE T. Magn.
,
51
(
3
), pp.
1
4
. 10.1109/TMAG.2014.2361916
30.
Han
,
Z. H.
,
Zhang
,
Y.
,
Song
,
C. X.
, and
Zhang
,
K. S.
,
2017
, “
Weighted Gradient-Enhanced Kriging for High-Dimensional Surrogate Modeling and Design Optimization
,”
AIAA J.
,
55
(
12
), pp.
4330
4346
. 10.2514/1.J055842
31.
Hao
,
P.
,
Feng
,
S.
,
Zhang
,
K.
,
Li
,
Z.
,
Wang
,
B.
, and
Li
,
G.
,
2018
, “
Adaptive Gradient-Enhanced Kriging Model for Variable-Stiffness Composite Panels Using Isogeometric Analysis
,”
Struct. Multidiscip. O.
,
58
(
1
), pp.
1
16
. 10.1007/s00158-018-1988-1
32.
Bouhlel
,
M. A.
, and
Martins
,
J. R. R. A.
,
2019
, “
Gradient-Enhanced Kriging for High-Dimensional Problems
,”
Eng. Comput.
,
35
(
1
), pp.
157
173
. 10.1007/s00366-018-0590-x
33.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2018
, “
Dual-Sampling Based Co-Kriging Method for Design Optimization Problems With Multi-Fidelity Models
,”
2018 Multidisciplinary Analysis and Optimization Conference
,
AIAA, Atlanta, GA
,
June 25–29
, Paper No. AIAA-18-3747.
34.
Tokuda
,
I. T.
,
Hoang
,
H.
, and
Kawato
,
M.
,
2017
, “
New Insights Into Olivo-Cerebellar Circuits for Learning From a Small Training Sample
,”
Curr. Opin. Neurobiol.
,
46
, pp.
58
67
. 10.1016/j.conb.2017.07.010
35.
Poggio
,
T.
, and
Vetter
,
T.
,
1992
, “
Recognition and Structure from One 2D Model View: Observations on Prototypes, Object Classes and Symmetries
,”
Laboratory Massachusetts Institute of Technology
,
Cambridge, MA
,
Report No. AI-M-1347
.
36.
Yang
,
J.
,
Yu
,
X.
,
Xie
,
Z. Q.
, and
Zhang
,
J. P.
,
2011
, “
A Novel Virtual Sample Generation Method Based on Gaussian Distribution
,”
Knowl Based. Syst.
,
24
(
6
), pp.
740
748
. 10.1016/j.knosys.2010.12.010
37.
Chen
,
Z. S.
,
Zhu
,
B.
,
He
,
Y. L.
, and
Yu
,
L. A.
,
2017
, “
A PSO Based Virtual Sample Generation Method for Small Sample Sets: Applications to Regression Datasets
,”
Eng. Appl. Artif. Intel.
,
59
, pp.
236
243
. 10.1016/j.engappai.2016.12.024
38.
Chongfu
,
H.
,
1997
, “
Principle of Information Diffusion
,”
Fuzzy Set. Syst.
,
91
(
1
), pp.
69
90
. 10.1016/S0165-0114(96)00257-6
39.
Li
,
D. C.
,
Wu
,
C. S.
,
Tsai
,
T. I.
, and
Lina
,
Y. S.
,
2007
, “
Using Mega-Trend-Diffusion and Artificial Samples in Small Data Set Learning for Early Flexible Manufacturing System Scheduling Knowledge
,”
Comput. Oper. Res.
,
34
(
4
), pp.
966
982
. 10.1016/j.cor.2005.05.019
40.
Lin
,
L. S.
,
Li
,
D. C.
, and
Pan
,
C. W.
,
2016
, “
Improving Virtual Sample Generation for Small Sample Learning With Dependent Attributes
,”
2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)
,
IEEE, Kumamoto
,
June 10–14
, pp.
715
718
.
41.
Li
,
D. C.
, and
Lin
,
Y. S.
,
2006
, “
Using Virtual Sample Generation to Build Up Management Knowledge in the Early Manufacturing Stages
,”
Eur. J. Oper. Res.
,
175
(
1
), pp.
413
434
. 10.1016/j.ejor.2005.05.005
42.
Angelier
,
J.
,
1990
, “
Inversion of Field Data in Fault Tectonics to Obtain the Regional Stress—III. A New Rapid Direct Inversion Method by Analytical Means
,”
Geophys. J. Int.
,
103
(
2
), pp.
363
376
. 10.1111/j.1365-246X.1990.tb01777.x
43.
Li
,
D. C.
,
Lin
,
W. K.
,
Lin
,
L. S.
,
Chen
,
C. C.
, and
Huang
,
W. T.
,
2016
, “
The Attribute-Trend-Similarity Method to Improve Learning Performance for Small Datasets
,”
Int. J. Prod. Res.
,
55
(
7
), pp.
1898
1913
. 10.1080/00207543.2016.1213447
44.
Gong
,
H. F.
,
Chen
,
Z. S.
,
Zhu
,
Q. X.
, and
He
,
Y. L.
,
2017
, “
A Monte Carlo and PSO Based Virtual Sample Generation Method for Enhancing the Energy Prediction and Energy Optimization on Small Data Problem: An Empirical Study of Petrochemical Industries
,”
Appl. Energ.
,
197
, pp.
405
415
. 10.1016/j.apenergy.2017.04.007
45.
Viana
,
F. A. C.
, and
Goel
,
T.
,
2010
, “Surrogates Toolbox User's Guide,” http://sites.google.com/site/felipeacviana/surrogatestoolbox, Accessed April 30, 2020.
46.
Suykens
,
J. A.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
. 10.1023/A:1018628609742
47.
Karsmakers
,
P.
,
Ojeda
,
F.
,
Alzate
,
C.
et al
,
2010
,
LS-SVMlab Toolbox User's Guide. Version 1.8
,
Katholieke Universiteit Leuven
,
Leuven, Belgium
.
48.
Kulfan
,
B.
, and
Bussoletti
,
J.
,
2006
,
“Fundamental” Parameteric Geometry Representations for Aircraft Component Shapes
,”
Proc. AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Portsmouth, VA
,
Sept. 6–8
, Paper No. AIAA-06-6948.
49.
Schittkowski
,
K.
,
1986
, “
NLPQL: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems
,”
Ann. Oper. Res.
,
5
(
2
), pp.
485
500
. 10.1007/BF02022087
50.
Tanese
,
R.
,
1989
, “
Distributed Genetic Algorithms
,”
Proceedings Third International Conference on Genetic Algorithms (ICGA)
,
George Mason University, Fairfax, VA
,
June 4–7
, pp.
434
439
.
51.
Wu
,
B. B.
,
Huang
,
H.
,
Chen
,
S. Y.
, and
Wu
,
W. R.
,
2013
, “
Multi-Disciplinary Design Optimization of Ocean Satellites Based on Analytical Target Cascading Strategy
,”
Chinese J. Aeronaut.
,
34
(
1
), pp.
9
16
.
You do not currently have access to this content.