Abstract

Long-lived systems are likely to experience many independent modifications during their lifecycles. Prior literature provides tools for predicting how a change in a fixed system is likely to propagate, but these tools do not address change propagation across multiple, independent modifications. The phenomenon of a modification consuming excess, thereby increasing the likelihood of change propagation in future modifications, is studied in this work as dynamic change probabilities (DCP). This research builds on change propagation techniques, network theory, and excess to provide high-level guidance about how DCP may alter change propagation within a system over time. A sample of existing and synthetic systems are explored, as we show that the rate of change likelihood increase following a modification depends on the number of components (nodes), the dependencies between components (edges), and initial change propagation probability values (edge weights). Results also show that excess placement in specific components, and the presence of system hubs (high-degree components), can mitigate the impact of excess consumption when multiple system modifications are made over time.

References

1.
Schulz
,
A. P.
,
Fricke
,
E.
, and
Igenbergs
,
E.
,
2000
, “
Enabling Changes in Systems Throughout the Entire Life-Cycle—Key to Success?
Proceedings of the 10th Annual INCOSE Conference
,
Minneapolis, MN
,
July
, pp.
565
573
.
2.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
. 10.1016/0048-7333(94)00775-3
3.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
. https://doi.org/10.1115/1.1765117
4.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
3
), pp.
213
235
. 10.1007/s00163-002-0020-2
5.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2007
, “
A Network Approach to Define Modularity of Components in Complex Products
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1118
1129
. 10.1115/1.2771182
6.
Tackett
,
M. W. P.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2014
, “
A Model for Quantifying System Evolvability Based on Excess and Capacity
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051002
. 10.1115/1.4026648
7.
Eckert
,
C.
,
Isaksson
,
O.
, and
Earl
,
C.
,
2019
, “
Design Margins: A Hidden Issue in Industry
,”
Des. Sci.
,
5
, p.
e9
. 10.1017/dsj.2019.7
8.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
. 10.1007/s00163-003-0031-7
9.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2011
, “
Engineering Change: An Overview and Perspective on the Literature
,”
Res. Eng. Des.
,
22
(
2
), pp.
103
124
. 10.1007/s00163-010-0097-y
10.
Mak
,
W. H. J.
, and
John Clarkson
,
P.
,
2017
, “
Towards the Design of Resilient Large-Scale Engineering Systems
,”
Procedia CIRP
,
60
, pp.
536
541
. 10.1016/j.procir.2017.01.034
11.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2013
, “
A Technique to Assess the Changeability of Complex Engineering Systems
,”
J. Eng. Des.
,
24
(
7
), pp.
477
498
. 10.1080/09544828.2013.769207
12.
Giffin
,
M.
,
de Weck
,
O.
,
Bounova
,
G.
,
Keller
,
R.
,
Eckert
,
C.
, and
Clarkson
,
P. J.
,
2009
, “
Change Propagation Analysis in Complex Technical Systems
,”
ASME J Mech. Des.
,
131
(
8
), p.
081001
. 10.1115/1.3149847
13.
Allen
,
J. D.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2016
, “
Evaluation of System Evolvability Based on Usable Excess
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091101
. 10.1115/1.4033989
14.
Watson
,
J. D.
,
Allen
,
J. D.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2016
, “
Optimization of Excess System Capability for Increased Evolvability
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1277
1294
. 10.1007/s00158-015-1378-x
15.
Long
,
D.
, and
Ferguson
,
S.
,
2017
, “
A Case Study of Evolvability and Excess on the B-52 Stratofortress and F/A-18 Hornet
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Cleveland, OH
,
Aug. 6–9
, p.
V004T05A026
.
16.
Cansler
,
E. Z.
,
White
,
S. B.
,
Ferguson
,
S. M.
, and
Mattson
,
C. A.
,
2016
, “
Excess Identification and Mapping in Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081103
. 10.1115/1.4033884
17.
White
,
S.
, and
Ferguson
,
S.
,
2017
, “
Exploring Architecture Selection and System Evolvability
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
16
.
18.
Pasqual
,
M. C.
, and
De Weck
,
O. L.
,
2012
, “
Multilayer Network Model for Analysis and Management of Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
305
328
. 10.1007/s00163-011-0125-6
19.
Belt
,
A.
,
2013
, “
Exploring Customization Option Assessment and Selection During the Early Stages of Redesign
,”
Master’s thesis
,
North Carolina State University
,
NC
.
20.
Hamraz
,
B.
,
Caldwell
,
N. H. M.
, and
John Clarkson
,
P.
,
2012
, “
A Multidomain Engineering Change Propagation Model to Support Uncertainty Reduction and Risk Management in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100905
. 10.1115/1.4007397
21.
Simpson
,
T. W.
,
Bobuk
,
A.
,
Slingerland
,
L. A.
,
Brennan
,
S.
,
Logan
,
D.
, and
Reichard
,
K.
,
2012
, “
From User Requirements to Commonality Specifications: An Integrated Approach to Product Family Design
,”
Res. Eng. Des.
,
23
(
2
), pp.
141
153
. 10.1007/s00163-011-0119-4
22.
Hamraz
,
B.
,
Caldwell
,
N. H.
, and
Clarkson
,
P. J.
,
2013
, “
A Matrix-Calculation-Based Algorithm for Numerical Change Propagation Analysis
,”
IEEE Trans. Eng. Manag.
,
60
(
1
), pp.
186
198
. 10.1109/TEM.2012.2203307
23.
Sosa
,
M.
,
Mihm
,
J.
, and
Browning
,
T. R.
,
2011
, “
Degree Distribution and Quality in Complex Engineered Systems
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101008
. 10.1115/1.4004973
24.
Albert
,
R.
,
Jeong
,
H.
, and
Barabási
,
A.-L.
,
2000
, “
Error and Attack Tolerance of Complex Networks
,”
Nature
,
406
(
6794
), pp.
378
382
. 10.1038/35019019
25.
Strogatz
,
S. H.
,
2001
, “
Exploring Complex Networks
,”
Nature
,
410
(
6825
), pp.
268
276
. 10.1038/35065725
26.
Barabási
,
A.-L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
. 10.1126/science.286.5439.509
27.
Mehrpouyan
,
H.
,
Haley
,
B.
,
Dong
,
A.
,
Tumer
,
I. Y.
, and
Hoyle
,
C.
,
2015
, “
Resiliency Analysis for Complex Engineered System Design
,”
Artifcial Intell. Eng. Des. Anal. Manuf.
,
29
(
1
), pp.
93
108
. 10.1017/S0890060414000663
28.
Newman
,
M. E. J.
,
2010
,
Networks: An Introduction
,
Oxford University Press Inc.
,
New York
.
You do not currently have access to this content.