Abstract

This paper proposes a machine learning–based multifidelity modeling (MFM) and information-theoretic Bayesian optimization approach where the associated models can have complex discrepancies among each other. Advantages of MFM-based optimization over a single-fidelity surrogate, specifically under complex constraints, are discussed with benchmark optimization problems involving noisy data. The MFM framework, based on modeling of the varied fidelity information sources via Gaussian processes, is augmented with information-theoretic active learning strategies that involve sequential selection of optimal points in a multiscale architecture. This framework is demonstrated to exhibit improved efficiency on practical engineering problems like high-dimensional design optimization of compressor rotor via implementing its multiscale architecture and calibration of expensive microstructure prediction model. From the perspective of the machine learning–assisted design of multiphysics systems, advantages of the proposed framework have been presented with respect to accelerating the search of optimal design conditions under budget constraints.

References

1.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
219
241
. 10.1007/s00158-009-0420-2
2.
Kuya
,
Y.
,
Takeda
,
K.
,
Zhang
,
X.
, and
Forrester
,
A. I. J.
,
2011
, “
Multifidelity Surrogate Modeling of Experimental and Computational Aerodynamic Data Sets
,”
AIAA J.
,
49
(
2
), pp.
289
298
. 10.2514/1.J050384
3.
Hevesi
,
J. A.
,
Flint
,
A. L.
, and
Istok
,
J. D.
,
1992
, “
Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps
,”
J. Appl. Meteorol.
,
31
(
7
), pp.
677
688
. 10.1175/1520-0450(1992)031<0677:PEIMTU>2.0.CO;2
4.
Qian
,
Z.
,
Seepersad
,
C. C.
,
Roshan Joseph
,
V.
,
Allen
,
J. K.
, and
Jeff Wu
,
C. F.
,
2005
, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
668
677
. 10.1115/1.2179459
5.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statist. Sci.
,
4
(
4
), pp.
409
423
. 10.1214/ss/1177012413
6.
Perdikaris
,
P.
,
Venturi
,
D.
,
Royset
,
J. O.
, and
Karniadakis
,
G. E.
,
2015
, “
Multi-Fidelity Modelling Via Recursive Co-Kriging and Gaussian-Markov Random Fields
,”
Proc. Roy. Soc. A Math. Phys. Eng. Sci.
,
471
(
2179
), p.
20150018
. 10.1098/rspa.2015.0018
7.
Wang
,
X.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2018
, “
Multidisciplinary and Multifidelity Design Optimization of Electric Vehicle Battery Thermal Management System
,”
ASME J. Mech. Des.
,
140
(
9
), p.
094501
. 10.1115/1.4040484
8.
Wang
,
G. G.
, and
Shan
,
S.
,
2006
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
. 10.1115/1.2429697
9.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
. 10.1093/biomet/87.1.1
10.
Han
,
Z.-H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
. 10.2514/1.J051354
11.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. Roy. Soc. A Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
. 10.1098/rspa.2007.1900
12.
Le Gratiet
,
L.
,
2013
, “
Multi-Fidelity Gaussian Process Regression for Computer Experiments
,” thesis,
Université Paris-Diderot—Paris VII
,
Paris, France
.
13.
Le Gratiet
,
L.
, and
Garnier
,
J.
,
2014
, “
Recursive Co-Kriging Model for Design of Computer Experiments With Multiple Levels of Fidelity
,”
Int. J. Uncertainty Quantification
,
4
(
5
), pp.
365
386
. 10.1615/Int.J.UncertaintyQuantification.v4.i5
14.
Perdikaris
,
P.
,
Venturi
,
D.
, and
Karniadakis
,
G.
,
2016
, “
Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data Sets
,”
SIAM J. Sci. Comput.
,
38
(
4
), pp.
B521
B538
. 10.1137/15M1055164
15.
Parussini
,
L.
,
Venturi
,
D.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Multi-Fidelity Gaussian Process Regression for Prediction of Random Fields
,”
J. Comput. Phys.
,
336
(
1
), pp.
36
50
. 10.1016/j.jcp.2017.01.047
16.
Sen
,
R.
,
Kandasamy
,
K.
, and
Shakkottai
,
S.
,
2018
, “
Multi-Fidelity Black-Box Optimization With Hierarchical Partitions
,”
Proceedings of the 35th International Conference on Machine Learning
, Vol.
80
,
J.
Dy
and
A.
Krause
, eds.,
Stockholmsmässan, Stockholm Sweden
,
July 10–15
, pp.
4538
4547
.
17.
Kandasamy
,
K.
,
Dasarathy
,
G.
,
Schneider
,
J.
, and
Póczos
,
B.
,
2017
, “
Multi-Fidelity Bayesian Optimisation With Continuous Approximations
,”
Proceedings of the 34th International Conference on Machine Learning
, Vol.
70
,
D.
Precup
and
Y. W.
Teh
, eds.,
International Convention Centre
,
Sydney, Australia
,
Aug. 6–11
, pp.
1799
1808
.
18.
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2016
, “
Model Inversion via Multi-Fidelity Bayesian Optimization: A New Paradigm for Parameter Estimation in Haemodynamics, and Beyond
,”
J. Roy. Soc. Interface
,
13
(
118
), p.
20151107
. 10.1098/rsif.2015.1107
19.
Song
,
J.
,
Chen
,
Y.
, and
Yue
,
Y.
,
2018
, “
A General Framework for Multi-Fidelity Bayesian Optimization With Gaussian Processes
,”
Cornell University
,
Ithaca, NY
, abs/1811.00755.
20.
Wu
,
J.
,
Toscano-Palmerin
,
S.
,
Frazier
,
P. I.
, and
Wilson
,
A. G.
,
2019
, “
Practical Multi-Fidelity Bayesian Optimization for Hyperparameter Tuning
,” e-print arXiv:1903.04703.
21.
Takeno
,
S.
,
Fukuoka
,
H.
,
Tsukada
,
Y.
,
Koyama
,
T.
,
Shiga
,
M.
,
Takeuchi
,
I.
, and
Karasuyama
,
M.
,
2019
, “
Multi-Fidelity Bayesian Optimization With Max-Value Entropy Search
,” e-print arXiv:1901.08275.
22.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
,
The MIT Press
,
Cambridge, MA
.
23.
Duvenaud
,
D.
,
2014
, “
Automatic Model Construction With Gaussian Processes
,” Ph.D. thesis,
Computational and Biological Learning Laboratory, University of Cambridge
,
Cambridge, UK
.
24.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
. 10.1137/0916069
25.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
de Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
. 10.1109/JPROC.2015.2494218
26.
Brochu
,
E.
,
Cora
,
V. M.
, and
deFreitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, With Application to Active User Modeling and Hierarchical Reinforcement Learning
,”
Cornell University
,
Ithaca, NY
, abs/1012.2599.
27.
Mockus
,
J.
,
1974
, “
On Bayesian Methods for Seeking the Extremum
,”
Optimization Techniques IFIP Technical Conference Novosibirsk
,
Novosibirsk
,
July 1–7
,
Springer-Verlag
,
London
, pp.
400
404
.
28.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
29.
Brochu
,
E.
,
Cora
,
V. M.
, and
De Freitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, With Application to Active User Modeling and Hierarchical Reinforcement Learning
,”
Department of Computer Science, University of British Columbia
,
Vancouver, Canada
, Technical Report No. TR-2009-23..
30.
Gardner
,
J. R.
,
Kusner
,
M. J.
,
Xu
,
Z.
,
Weinberger
,
K. Q.
, and
Cunningham
,
J. P.
,
2014
, “
Bayesian Optimization With Inequality Constraints
,”
Proceedings of the 31st International Conference on International Conference on Machine Learning
- Volume
32
,
Beijing, China
,
June 21–26
, pp.
937
945
.
31.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
. 10.1080/00401706.1979.10489755
32.
Contal
,
E.
,
Perchet
,
V.
, and
Vayatis
,
N.
,
2014
, “
Gaussian Process Optimization With Mutual Information
,”
Proceedings of the 31st International Conference on International Conference on Machine Learning
, Volume
32
,
Beijing, China
,
June 21–26
, pp.
253
261
.
33.
Liu
,
H.
,
Ong
,
Y.-S.
,
Cai
,
J.
, and
Wang
,
Y.
,
2018
, “
Cope With Diverse Data Structures in Multi-Fidelity Modeling: A Gaussian Process Method
,”
Eng. Appl. Artificial Intelligence
,
67
(
1
), pp.
211
225
. 10.1016/j.engappai.2017.10.008
34.
Parr
,
J. M.
,
Forrester
,
A. I. J.
,
Keane
,
A. J.
, and
Holden
,
C. M. E.
,
2012
, “
Enhancing Intill Sampling Criteria for Surrogate-Based Constrained Optimization
,”
J. Comput. Methods Sci. Eng.
,
12
(
1–2
), pp.
25
45
.
35.
Parr
,
J. M.
,
Keane
,
A. J.
,
Forrester
,
A. I. J.
, and
Holden
,
C. M. E.
,
2012
, “
Infill Sampling Criteria for Surrogate-Based Optimization With Constraint Handling
,”
Eng. Optim.
,
44
(
10
), pp.
1147
1166
. 10.1080/0305215X.2011.637556
36.
Joly
,
M.
,
Sarkar
,
S.
, and
Mehta
,
D.
,
2019
, “
Machine Learning Enabled Adaptive Optimization of a Transonic Compressor Rotor With Precompression
,”
ASME J. Turbomach.
,
141
(
5
), p.
051011
. 10.1115/1.4041808
37.
Mondal
,
S.
,
Joly
,
M.
, and
Sarkar
,
S.
,
2019
, “
Multi-Fidelity Global-Local Optimization of a Transonic Compressor Rotor
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
,
American Society of Mechanical Engineers
.
38.
Acharya
,
R.
,
Sharon
,
J. A.
, and
Staroselsky
,
A.
,
2017
, “
Prediction of Microstructure in Laser Powder Bed Fusion Process
,”
Acta Mater.
,
124
(
1
), pp.
360
371
. 10.1016/j.actamat.2016.11.018
You do not currently have access to this content.