Programmable multistable mechanisms (PMM) exhibit a modifiable stability behavior in which the number of stable states, stiffness, and reaction force characteristics are controlled via their programming inputs. In this paper, we present experimental characterization for the concept of stability programing introduced in our previous work (Zanaty et al., 2018, “Programmable Multistable Mechanisms: Synthesis and Modeling,” ASME J. Mech. Des., 140(4), p. 042301.) A prototype of the T-combined axially loaded double parallelogram mechanisms (DPM) with rectangular hinges is manufactured using electrodischarge machining (EDM). An analytical model based on Euler–Bernoulli equations of the T-mechanism is derived from which the stability behavior is extracted. Numerical simulations and experimental measurements are conducted on programming the mechanism as monostable, bistable, tristable, and quadrastable, and show good agreement with our analytical derivations within 10%.

References

1.
Zanaty
,
M.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Programmable Multistable Mechanisms: Synthesis and Modeling
,”
ASME J. Mech. Des.
,
140
(
4
), p.
042301
.
2.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
, Hoboken, NJ.
3.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
Microelectromech. Syst., J.
,
13
(
2
), pp.
137
146
.
4.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
.
5.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1998
, “
Introduction of Two-Link In-Plane, Bistable Compliant MEMS
,”
ASME
Paper No. DETC98/MECH-5837.
6.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
701
708
.
7.
Chen
,
G.
, and
Du
,
Y.
,
2013
, “
Double-Young Tristable Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011007
.
8.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
(
2
), p.
025011
.
9.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.
10.
Receveur
,
R. A.
,
Marxer
,
C. R.
,
Woering
,
R.
,
Larik
,
V. C.
, and
de Rooij
,
N.-F.
,
2005
, “
Laterally Moving Bistable MEMS DC Switch for Biomedical Applications
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
1089
1098
.
11.
Oberhammer
,
J.
,
Tang
,
M.
,
Liu
,
A.-Q.
, and
Stemme
,
G.
,
2006
, “
Mechanically Tri-Stable, True Single-Pole-Double-Throw (SPDT) Switches
,”
J. Micromech. Microeng.
,
16
(
11
), p.
2251
.
12.
Merkle
,
R. C.
,
1993
, “
Two Types of Mechanical Reversible Logic
,”
Nanotechnology
,
4
(
2
), p.
114
.
13.
Harne
,
R.
, and
Wang
,
K.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
14.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K.
,
2017
, “
Dynamics of a Bistable Miura-Origami Structure
,”
Phys. Rev. E
,
95
(
5
), p.
052211
.
15.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.
16.
Zanaty
,
M.
,
2018
, “
Programmable Multistable Mechanisms
,” Ph.D. thesis, Ecole Polytechnique Federale De Lausanne, Lausanne, Switzerland.
17.
Henein
,
S.
, ed.,
2017
,
The Art of Flexure Mechanism Design
,
EPFL Press
, Lausanne, Switzerland.
18.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
19.
Voestalpine, 2017, “
BÖHLER K390 MICROCLEAN
,” Voestalpine, Linz, Austria, accessed Dec. 17, 2017, www.bohler-edelstahl.com/en/K390PM.php
20.
Leica Microsystems, 2017, “
Encoded Stereo Microscopes Leica M125 C, M165 C, M205 C, M205 A
,” Leica Microsystems, Wetzlar, Germany, accessed Dec. 17, 2017, https://www.leica-microsystems.com/products/stereo-microscopes-macroscopes/research/details/product/leica-m125-c/
21.
Keyence, 2017, “
Measurement Sensors
,” Keyence, Osaka, Japan, accessed Dec. 17, 2017, www.keyence.com/products/measure/laser-1/lk-g5000/models/lk-h082/index.jsp
22.
Kistler, 2017, “
1-Component Low Force Sensor, Fz up to ±50 N / ±11.24 lbf
,” Kistler, Winterthur, Switzerland, accessed Dec. 17, 2017, http://www.ni.com/pdf/manuals/376935c_02.pdf
23.
NI, 2017, “
NI cRIO 9035
,” National Instruments, Austin, TX, accessed Dec. 17, 2017, http://www.ni.com/pdf/manuals/376935c_02.pdf
24.
NI, 2017, “
NI-9220
,” National Instruments, Austin, TX, accessed Dec. 17, 2017, http://www.ni.com/documentation/en/c-series-voltage-input-module/latest/9220/specs/
25.
Kistler, 2017, “
Kistler's 5171A Charge Amplifier Module
,” Kistler, Winterthur, Switzerland, accessed Dec. 17, 2017, https://www.kistler.com/en/products/components/signal-conditioning/charge-amplifier-module-ki-5171a-for-ni-compactrio/
You do not currently have access to this content.