Design synthesis of distributed compliant mechanisms is often a two-stage process involving (a) conceptual topology synthesis and a subsequent (b) refinement stage to meet strength and manufacturing specifications. The usefulness of a solution is ascertained only after the sequential completion of these two steps that are, in general, computationally intensive. This paper presents a strategy to rapidly estimate final operating stresses even before the actual refinement process. This strategy is based on the uniform stress distribution metric, and a functional characterization of the different members that constitute the compliant mechanism topology. Furthermore, this paper uses the underlying mechanics of stress bound estimation to propose two rule of thumb guidelines for insightful selection of topologies and systematically modifying them for an application. The selection of the best conceptual solution in the early stage design avoids refinement of topologies that inherently may not meet the stress constraints. This paper presents two examples that illustrate these guidelines through the selection and refinement of topologies for a planar compliant gripper application.

References

1.
Howell
,
L. L.
, ed.,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
2.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
,
1999
, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
IEEE/ASME Trans. Mechatronics
,
4
(
4
), pp.
396
408
.
3.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
.
4.
Lu
,
K.-J.
, and
Kota
,
S.
,
2005
, “
An Effective Method of Synthesizing Compliant Adaptive Structures Using Load Path Representation
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
307
317
.
5.
Krishnan
,
G.
, and
Ananthasuresh
,
G. K.
,
2008
, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102304
.
6.
Hetrick
,
J.
, and
Kota
,
S.
,
2003
, “
Displacement Amplification Structure and Device
,” U.S. Patent No.
6,557,436 B1
.
7.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
A Metric to Evaluate and Synthesize Distributed Compliant Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011004
.
8.
Yin
,
L.
, and
Ananthasuresh
,
G.
,
2003
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
31
(
2
), pp.
151
179
.
9.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
,
2000
, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
,
28
(
4
), pp.
245
280
.
10.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.
11.
Ananthasuresh
,
G. K.
,
1994
, “
A New Design Paradigm in Micro-Electro-Mechanical Systems and Investigations on Compliant Mechanisms
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.
12.
Lu
,
K.-J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
13.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
14.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
15.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y.-M.
,
2006
, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
542
549
.
16.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2011
, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
.
17.
Hetrick
,
J. A.
, and
Kota
,
S.
,
1999
, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
229
234
.
18.
Hegde
,
S.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Design of Single-Input-Single-Output Compliant Mechanisms for Practical Applications Using Selection Maps
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081007
.
19.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Kinetostatic Formulation for Load-Flow Visualization in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021007
.
20.
Hibbeler
,
R. C.
, and
Kiang
,
T.
,
2015
,
Structural Analysis
,
Prentice Hall
, Upper Saddle River, NJ.
21.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
.
22.
Hoetmer
,
K.
,
Woo
,
G.
,
Kim
,
C.
, and
Herder
,
J.
,
2010
, “
Negative Stiffness Building Blocks for Statically Balanced Compliant Mechanisms: Design and Testing
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041007
.
23.
Reddy
,
A. N.
,
Maheshwari
,
N.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Miniature Compliant Grippers With Vision-Based Force Sensing
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
867
877
.
24.
Beroz
,
J.
,
Awtar
,
S.
, and
Hart
,
A. J.
,
2014
, “
Extensible-Link Kinematic Model for Characterizing and Optimizing Compliant Mechanism Motion
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031008
.
You do not currently have access to this content.