For efficiently estimating the dynamic failure probability of the structure with the multiple temporal and spatial parameters, a transferred limit state function technique is first proposed in this paper. By finding the effective first-crossing point which controls the failure of the structural system, the transferred technique is constructed to transform the dynamic reliability problem into a static one. For determining the effective first-crossing point, the parameter domain is first divided into different dominant domain corresponding to every parameter. Based on the parameter dominant domain, the first-crossing point about each parameter is obtained by comparing the difference value between the point on the failure boundary and the corresponding parameter upper bound. Finally, the effective first-crossing point is determined by finding the point which controls the structure failure. With the transferred technique, two strategies (including the sparse grid integration based on fourth-moment method and the maximum entropy based on dimensional reduction method) are proposed to efficiently estimate the dynamic failure probability. Several examples are employed to illustrate the significance and effectiveness of the transferred technique and the proposed methods for solving the multiple temporal and spatial parameters dynamic reliability. The results show that the proposed methods can estimate the multiple temporal and spatial parameters dynamic failure probability efficiently and accurately.

References

1.
Li
,
J.
,
Chen
,
J. B.
, and
Fan
,
W. H.
,
2007
, “
The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability
,”
Struct. Saf.
,
29
(
2
), pp.
112
–.
2.
Wen
,
Y. K.
,
2001
, “
Reliability and Performance-Based Design
,”
Struct. Saf.
,
23
(
4
), pp.
407
428
.
3.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.
4.
Binder
,
K.
,
1997
, “
Applications of the Monte Carlo Method to Statistical Physics
,”
Rep. Prog. Phys.
,
60
(
60
), pp.
487
559
.
5.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Important Sampling in High Dimensions
,”
Struct. Saf.
,
25
(
2
), pp.
139
163
.
6.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
An Exact and Invariant First Order Reliability Format
,”
J. Eng. Mech.
,
100
, pp.
111
121
.https://www.researchgate.net/publication/243758427_An_Exact_and_Invariant_First_Order_Reliability_Format
7.
Zhao
,
Y. G.
, and
Ono
,
T.
,
1999
, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Saf.
,
21
(
2
), pp.
95
112
.
8.
Schueller
,
G. I.
,
Pradlwarter
,
H. J.
, and
Koutsourelakis
,
P. S.
,
2004
, “
A Critical Appraisal of Reliability Estimation Procedure for High Dimensions
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
463
474
.
9.
Rice
,
S. O.
,
1945
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
24
(
1
), pp.
46
156
.
10.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2009
, “
Reliability Analysis of System Subject to First-Passage Failure
,” NASA Langley Research Center, Hampton, VA, NASA Technical Report No.
NASA/CR-2009-215782
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100011340.pdf
11.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Dependent Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
12.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
13.
Zhang
,
J.
, and
Du
,
X.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.
14.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p. 031005.
15.
Chen
,
J.
, and
Li
,
J.
,
2004
, “
The Extreme Value Probability Density Function Based Method for Dynamic Reliability Assessment of Stochastic Structures
,”
Earthq. Eng. Eng. Vib.
,
24
(
6
), pp.
39
44
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGGC200406007.htm
16.
Chen
,
J. B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.
17.
Li
,
J.
, and
Mourelatos
,
Z. P.
,
2009
, “
Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
,”
ASME J. Mech. Des.
,
131
(
7
), p. 071009.
18.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p. 121007.
19.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p. 071003.
20.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p. 081010.
21.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A New Approach for Reliability Analysis With Time-Variant Performance Characteristics
,”
Reliab. Eng. Syst. Saf.
,
115
(
115
), pp.
70
81
.
22.
Mourelatos
,
Z. P.
,
Majcher
,
M.
, and
Pandey
,
V.
,
2015
, “
Time-Dependent Reliability Analysis Using the Total Probability Theorem
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031405
.
23.
Jiang
,
C.
,
Huang
,
X. P.
,
Han
,
X.
, and
Zhang
,
D. Q.
,
2014
, “
A Time-Variant Reliability Analysis Method for Structural Systems Based on Stochastic Process Discretization
,”
ASME J. Mech. Des.
,
136
(
9
), p. 091009.
24.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
.
25.
Wang
,
Z.
,
Zhang
,
X.
,
Huang
,
H. Z.
, and
Mourelatos
,
Z. P.
,
2016
, “
A Simulation Method to Estimate Two Types of Time-Varying Failure Rate of Dynamic Systems
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121404
.
26.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Baseski
,
I.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.
27.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
28.
Shi
,
Y.
,
Lu
,
Z. Z.
,
Cheng
,
K.
, and
Zhou
,
Y.
,
2017
, “
Temporal and Spatial Multi-Parameter Dynamic Reliability and Global Reliability Sensitivity Analysis Based on the Extreme Value Moments
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
117
129
.
29.
Ahmad
,
S. S.
, and
Simonovic
,
S. P.
,
2015
, “
System Dynamics and Hydrodynamic Modeling Approaches for Spatial and Temporal Analysis of Flood Risk
,”
Int. J. River Basin Manage.
,
13
(
4
), pp.
443
461
.http://dx.doi.org/10.1080/15715124.2015.1016954
30.
Marrel
,
A.
,
Perot
,
N.
, and
Mottet
,
C.
,
2015
, “
Development of a Surrogate Model and Sensitivity Analysis for Spatio-Temporal Numerical Simulators
,”
Stochastic Environ. Res. Risk Assess.
,
29
(
3
), pp.
959
974
.
31.
He
,
J.
,
Gao
,
S.
, and
Gong
,
J.
,
2014
, “
A Sparse Grid Stochastic Collocation Method for Structural Reliability Analysis
,”
Struct. Saf.
,
51
, pp.
29
34
.
32.
Rabitz
,
H.
,
1999
, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
,
25
(
2
), pp.
197
233
.
33.
Li
,
G.
, and
Artamonov
,
M.
,
2003
, “
High-Dimensional Model Representations Generated From Low Order Terms-IP-RS-HDMR
,”
J. Comput. Chem.
,
24
(
5
), pp.
647
656
.
34.
Zhao
,
Y.
, and
Lu
,
Z.
,
2007
, “
Applicable Range of the Fourth-Moment Method for Structural Reliability
,”
J. Asian Archit. Build. Eng.
,
6
(
1
), pp.
151
158
.
35.
Inverardi
,
P. L.
, and
Tagliani
,
A.
,
2003
, “
Maximum Entropy Density Estimation From Fractional Moments
,”
Commun. Stat. Theory Methods
,
32
(
2
), pp.
327
345
.http://dx.doi.org/10.1081/STA-120018189
36.
Belisle
,
C. J. P.
,
1992
, “
Convergence Theorems for a Class of Simulated Annealing Algorithm on Rd
,”
J. Appl. Probab.
,
29
(
4
), pp.
885
895
.
37.
Malhotra
,
R.
,
Singh
,
N.
, and
Singh
,
Y.
,
2011
, “
Genetic Algorithms: Concepts, Design for Optimization of Process Controllers
,”
Comput. Inf. Sci.
,
4
(
2
), pp.
39
54
.http://dx.doi.org/10.5539/cis.v4n2p39
38.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Annal. Math. Stat.
,
23
(
3
), pp.
470
472
.
39.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
(
9
), pp.
28
40
.
You do not currently have access to this content.