Stirling engines are machines based on a simple working principle and are well known for their theoretical high thermal efficiency. Technical drawbacks related to the high temperatures required for achieving high values of thermal efficiency and output power have limited their spread to low-power applications. Stirling engines can operate with almost any source of heat. For this reason, these engines are currently installed in applications with renewable energy sources for combined heat and power generation (CHP), where the mechanical output power is usually converted into electrical power. The paper is focused on the design and analysis of a novel mechanical configuration with a higher number of cylinders than current commercial solutions. The performances of several multicylinder configurations are evaluated via numerical simulations, taking into account the dynamics of the mechanism and the thermal aspects of the cycle. Finally, a prototype of the main mechanism, which allows the number of cylinders to be increased, is introduced and briefly described.

References

1.
Walker
,
G.
,
1973
,
Stirling Cycle Machines
,
Clarendon Press
,
Oxford, UK
.
2.
Martini
,
W. R.
,
2004
,
Stirling Engine Design Manual
,
Martini Engineering Publication
, University Press of the Pacific, Stockton, CA.
3.
Senft
,
J. R.
,
1993
,
Ringbom Stirling Engines
,
Oxford University Press
,
New York
.
4.
Clucas
,
D. M.
, and
Raine
,
J. K.
,
1994
, “
Development of a Hermetically Sealed Stirling Engine Battery Charger
,”
Proc. Inst. Mech. Eng., Part C
,
208
(6), pp.
357
366
.10.1243/PIME_PROC_1994_208_141_02
5.
Gopal
,
V. K.
,
Duke
,
R.
, and
Clucas
,
D.
,
2009
, “
Active Stirling Engine
,”
TENCON IEEE
Region 10 Conference, Singapore, Jan. 23–26, pp.
1
6
.10.1109/TENCON.2009.5395807
6.
Kuhn
,
V.
,
Klemeš
,
J.
, and
Bulatov
,
I.
,
2008
, “
MicroCHP: Overview of Selected Technologies, Products and Field Test Results
,”
Appl. Therm. Eng.
,
28
(
16
), pp.
2039
2048
.10.1016/j.applthermaleng.2008.02.003
7.
Roselli
,
C.
,
Sasso
,
M.
,
Sibilio
,
S.
, and
Tzscheutschler
,
P.
,
2011
, “
Experimental Analysis of Microcogenerators Based on Different Prime Movers
,”
Energy Build.
,
43
(
4
), pp.
796
804
.10.1016/j.enbuild.2010.11.021
8.
Karabulut
,
H.
,
Yücesu
,
H. S.
, and
Çınar
,
C.
,
2006
, “
Nodal Analysis of a Stirling Engine With Concentric Piston and Displacer
,”
Renewable Energy
,
31
(
13
), pp.
2188
2197
.10.1016/j.renene.2005.12.009
9.
Karabulut
,
H.
,
Çınar
,
C.
,
Oztürk
,
E.
, and
Yücesu
,
H. S.
,
2010
, “
Torque and Power Characteristics of a Helium Charged Stirling Engine With a Lever Controlled Displacer Driving Mechanism
,”
Renewable Energy
,
35
(
1
), pp.
138
143
.10.1016/j.renene.2009.04.023
10.
Karabulut
,
H.
,
Aksoy
,
F.
, and
Oztürk
,
E.
,
2009
, “
Thermodynamic Analysis of a ß Type Stirling Engine With a Displacer Driving Mechanism by Means of a Lever
,”
Renewable Energy
,
34
(
1
), pp.
202
208
.10.1016/j.renene.2008.03.011
11.
Eldesouki
,
E.
,
2009
, “
Performance of a Beta-Configuration Heat Engine Having a Regenerative Displacer
,”
Renewable Energy
,
34
(
11
), pp.
2404
2413
.10.1016/j.renene.2009.03.016
12.
Karabulut
,
H.
,
Çınar
,
C.
,
Aksoy
,
F.
, and
Yücesu
,
H. S.
,
2010
, “
Improved Stirling Engine Performance Through Displacer Surface Treatment
,”
Int. J. Energy Res.
,
34
(
3
), pp.
275
283
.10.1002/er.1567
13.
Riofrio
,
J. A.
,
Al-Dakkan
,
K.
,
Hofacker
,
M. E.
, and
Barth
,
E. J.
,
2008
, “
Control-Based Design of Free-Piston Stirling Engines
,”
American Control Conference
, Seattle, WA, June 11–13, pp.
1533
1538
.10.1109/ACC.2008.4586709
14.
Shendage
,
D. J.
,
Kedare
,
S. B.
, and
Bapat
,
S. L.
,
2011
, “
An Analysis of Beta Type Stirling Engine With Rhombic Drive Mechanism
,”
Renewable Energy
,
36
(
1
), pp.
289
297
.10.1016/j.renene.2010.06.041
15.
Chatterton
,
S.
,
Pennacchi
,
P.
,
Vania
,
A.
,
Ricci
,
R.
, and
Ghisoni
,
A.
,
2012
, “
Design of a Stirling Machine in a Multi-Cylinder Configuration for Microcogeneration
,”
ASME
Paper No. GT2012-70096.10.1115/GT2012-70096
16.
Urieli
,
I.
, and
Berchowitz
,
D. M.
,
1984
,
Stirling Cycle Engine Analysis
,
Adam Hilger Ltd.
, Bristol,
UK
.
17.
Kato
,
Y.
, and
Baba
,
K.
,
2014
, “
Empirical Estimation of Regenerator Efficiency for a Low Temperature Differential Stirling Engine
,”
Renewable Energy
,
62
, pp.
285
292
.10.1016/j.renene.2013.07.023
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.