Bio-inspired design and the broader field of design-by-analogy have been the basis of numerous innovative designs throughout history; yet there remains much to be understood about these practices of design, their underlying cognitive mechanisms, and preferred ways in which to teach and support them. In this paper, we work to unify the broader design-by-analogy research literature with that of the bio-inspired design field, reviewing the current knowledge of designer cognition, the seminal supporting tools and methods for bio-inspired design, and postulating the future of bio-inspired design research from the larger design-by-analogy perspective. We examine seminal methods for supporting bio-inspired design, highlighting the areas well aligned with current findings in design-by-analogy cognition work and noting important areas for future research identified by the investigators responsible for these seminal tools and methods. Supplemental to the visions of these experts in bio-inspired design, we suggest additional projections for the future of the field, posing intriguing research questions to further unify the field of bio-inspired design with its broader resident field of design-by-analogy.

References

1.
French
,
M.
,
Invention and Evolution: Design in Nature and Engineering
,
Cambridge University Press
,
Cambridge, UK
,
1988
.
2.
Benyus
,
J.
,
Biomimicry: Innovation Inspired by Nature
,
Perennial
,
New York
,
1997
.
3.
Alberto
,
C.
,
2010
, “
The Bio-Inspired Design Landscape: Industrial Design. BioInspired!
,” (accessed, Dec, 28, 2013). Available at: http://bioinspired.sinet.ca/content/bio-inspired-design-landscape
4.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Function and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
.10.1115/1.4023484
5.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.10.1115/1.4023158
6.
Landauer
,
T. K.
,
Foltz
,
P. W.
, and
Laham
,
D.
,
1998
, “
An Introduction to Latent Semantic Analysis
,”
Discourse Processes
,
25
, pp.
259
284
.10.1080/01638539809545028
7.
Kemp
,
C.
, and
Tenenbaum
,
J.
,
2008
, “
The Discovery of Structural Form
,” PNAS, Supporting Information Appendix.
8.
Kemp
,
C.
, and
Tenenbaum
,
J. B.
,
2008
, “
The Discovery of Structural Form
, Supporting Information Appendix,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
31
), pp.
10687
10692
.10.1073/pnas.0802631105
9.
Vincent
,
J.
,
Bogatyreva
,
O.
,
Bogatyrev
,
N.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.10.1098/rsif.2006.0127
10.
Bar-Cohen
,
Y.
,
2006
, “
Biomimetics—Using Nature to Inspire Human Innovation
,”
Bioinspiration Biomimetics
,
1
(
1
), pp.
P1
P12
.10.1088/1748-3182/1/1/P01
11.
Dickinson
,
M.
,
1999
, “
Bionics: The Biology Insight Into Mechanical Design
,”
PNAS
,
96
(
25
), pp.
14208
14209
.10.1073/pnas.96.25.14208
12.
Merrill
,
C. L.
,
1982
, “
Biomimicry of the Dioxygen Active Site in the Copper Proteins Hemocyanin and Cytochrome Oxidase: Part I: Copper (I) Complexes Which React Reversibly with Dioxygen and Serve to Mimic the Active Site Function of Hemocyanin. Part II: Mu-Imidazolato Binuclear Metalloporphyrin Complexes of Iron and Copper as Models for the Active Site Structure in Cytochrome Oxidase
,” Doctoral thesis, Chemistry, Rice University, Houston, TX.
13.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding in Biomimetic and Artificial Inspiration of New Ideas
,”
AIEDAM
,
19
(
2
), pp.
113
132
.10.1017/S0890060405050109
14.
Tsujimoto
,
K.
,
Miura
,
S.
,
Tsumaya
,
A.
,
Nagai
,
Y.
,
Chakrabarti
,
A.
, and
Taura
,
T.
,
2008
, “
A Method for Creative Behavioral Design Based on Analogy and Blending from Natural Things
,”
ASME
Paper No. DETC2008-49389, August 3–6.10.1115/DETC2008-49389
15.
Srinivasan
,
V.
, and
Chakrabarti
,
A.
,
2009
, “
SAPPhIRE—An Approach to Analysis and Synthesis
,” paper presented at the
Proceedings of ICED'09, the 17th International Conference on Engineering Design
, Stanford, CA, August 24–27, 2009.
16.
Chiu
,
I.
, and
Shu
,
L. H.
,
2007
, “
Biomimetic Design through Natural Language Analysis to Facilitate Cross-Domain Information Retrieval
,”
Artif. Intell. Eng. Des., Anal. Manuf.: AIEDAM
,
21
, pp.
45
59
.
17.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R.
, and
McAdams
,
D.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.10.1115/1.4003249
18.
Cheong
,
H.
,
Shu
,
L. H.
,
Stone
,
R.
, and
Wood
,
K. L.
,
2008
, “
Translating Terms of the Functional Basis into Biologically Meaningful Keywords
,” paper presented at the
ASME
Paper No. DETC2008-49363, August 3–6, 200810.1115/DETC2008-49363.
19.
Shu
,
L. H.
,
Lenau
,
T. A.
,
Hansen
,
H. N.
, and
Alting
,
L.
,
2003
, “
Biomimetics Applied to Centering in Microassembly
,”
CIRP Annals
,
52
(
1
), pp.
101
104
.10.1016/S0007-8506(07)60541-1
20.
Shu
,
L. H.
,
2004
, “
Biomimetic Design for Remanufacture in the Context of Design for Assembly
,”
Proc. Inst. Mech. Eng.
,
218
(
3
), pp.
349
352
.10.1243/095440504322984894
21.
Mak
,
T. W.
, and
Shu
,
L. H.
,
2008
, “
Using Descriptions of Biological Phenomena for Idea Generation
,”
Res. Eng. Des.
,
19
(
1
), pp.
21
28
.10.1007/s00163-007-0041-y
22.
Nagel
,
J. K.
,
Stone
,
R.
, and
McAdams
,
D.
,
2010
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,”
ASME
Paper No. DETC2010-28233, August 15–18.10.1115/DETC2010-28233
23.
Nagel
,
S. J. K.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2013
, “
Chapter 5: Function-Based Biologically-Inspired Design
,”
Biologically Inspired Design: Computational Methods and Tools
,
A.
Goel
,
D. A.
McAdams
,
R. B.
Stone
, eds.,
Springer
, Verlag, London, UK.
24.
Nagel
,
J. K. S.
, and
Stone
,
R. B.
,
2011
, “
A Systematic Approach to Biologicallyinspired Engineering Design
,”
ASME
Paper No. DETC2011-47398, August 28–31.10.1115/DETC2011-47398
25.
Nagel
,
J. K. S.
,
Nagel
,
R. L.
, and
Stone
,
R. B.
,
2011
, “
Abstracting Biology in Engineering Design
,”
Int. J. Des. Eng.
,
4
, pp.
23
40
.
26.
Hirtz
,
J.
,
Stone
,
R. B.
,
Mcadams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
, pp.
65
82
.
27.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A.
, and
Yen
,
J.
,
2010
, “
DANE: Fostering Creativity in and Through Biologically Inspired Design
,”
First Iternational Conference on Design Creativity Kobe, Japan, Nov. 29
, (
ICDC2010
).10.1007/978-0-85729-224-7_16
28.
Craig
,
S.
,
Harrison
,
D.
,
Cripps
,
A.
, and
Knott
,
D.
,
2008
, “
BioTRIZ Suggests Radiative Cooling of Buildings Can Be Done Passively by Changing the Structure of Roof Insulation to Let Longwave Infrared Pass
,”
J. Bionic Eng.
,
5
, pp.
55
66
.
29.
Nix
,
A. A.
,
Sherret
,
B.
, and
Stone
,
R. B.
,
2011
, “
A Function Based Approach to TRIZ
,”
ASME
Paper No. DETC2011-47973 IDETC/CIE10.1115/DETC2011-47973
30.
Vincent
,
J. F. V.
, and
Mann
,
D. L.
,
2002
, “
Systematic Technology Transfer From Biology to Engineering
,”
Philos. Trans. R. Soc. Lon.
,
360
(
1791
), pp.
159
173
.10.1098/rsta.2001.0923
31.
Bogatyrev
,
N.
, and
Bogatyreva
,
O.
,
2009
, “
TRIZ Evolution Trends in Biological and Technological Design Strategies
,”
Proceedings of the 19th CIRP Design Conference-Competitive Design
, Cranfield University, Mar. 30–31 2009, pp.
293
299
.
32.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.10.1016/0142-694X(91)90003-F
33.
Deldin
,
J.-M.
, and
Schuknecht
,
M.
,
2014
, “
The AskNature Database: Enabling Solutions in Biomimetic Design
,”
Biologically Inspired Design
,
Springer
,
UK
, pp.
17
27
.
34.
Shu
,
L. H.
,
2010
, “
A Natural-Language Approach to Biomimetic Design
,”
AIEDAM
,
24
, pp.
507
519
.10.1017/S0890060410000363
35.
Smith
,
S. M.
,
Ward
,
T. B.
, and
Schumacher
,
J. S.
,
1993
, “
Constraining Effects of Examples in a Creative Generation Task
,”
Mem Cognit.
,
21
(
6
), pp.
837
845
.10.3758/BF03202751
36.
Chrysikou
,
E. G.
, and
Weisberg
,
R. W.
,
2005
, “
Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem Solving Task
,”
J. Exp. Psychol.: Learn., Mem. Cognit.
,
31
(
5
), pp.
1134
1148
.10.1037/0278-7393.31.5.1134
37.
Purcell
,
A. T.
, and
Gero
,
J. S.
,
1996
, “
Design and Other Types of Fixation
,”
Des. Stud.
,
17
(
4
), pp.
363
383
.10.1016/S0142-694X(96)00023-3
38.
Purcell
,
A. T.
, and
Gero
,
J. S.
,
1992
, “
Effects of Examples on the Results of a Design Activity
,”
Knowl.-Based Syst.
,
5
(
1
), pp.
82
91
.10.1016/0950-7051(92)90026-C
39.
Knoblich
,
G.
,
Ohlsson
,
S.
,
Haider
,
H.
, and
Rhenius
,
D.
,
1999
, “
Constraint Relaxation and Chunk Decomposition in Insight Problem Solving
,”
J. Exp. Psych. Learn. Mem. Cogn.
,
25
, pp.
1534
1555
.
40.
Smith
,
S. M.
, and
Blankenship
,
S. E.
,
1991
, “
Incubation and the Persistence of Fixation in Problem Solving
,”
Am. J. Psychol.
,
104
(
1
), pp.
61
87
.10.2307/1422851
41.
Moss
,
J.
,
Kotovksy
,
K.
, and
Cagan
,
J.
,
2007
, “
The Influence of Open Goals in the Acquisition of Problem Relevant Information
,”
J. Exp. Psychol.: Learn., Mem., Cognit.
,
33
, pp.
876
891
.
42.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
22
, pp.
85
100
.
43.
Linsey
,
J.
,
Murphy
,
J.
,
Markman
,
A.
,
Wood
,
K. L.
, and
Kortoglu
,
T.
,
2006
, “
Representing Analogies: Increasing the Probability of Innovation
,”
ASME
Paper No. DETC2006-99383. Philadelphia, PA.10.1115/DETC2006-99383
44.
Linsey
,
J.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.10.1115/1.4001110
45.
Viswanathan
,
V.
, and
Linsey
,
J.
,
2012
, “
A Study on the Role of Expertise in Design Fixation and Its Mitigation
,”
ASME
Paper No. DETC2012-71155.10.1115/DETC2012-71155
46.
Collado-Ruiz
,
D.
, and
Ostad-Ahmad-Ghorabi
,
H.
,
2010
, “
Influence of Environmental Information on Creativity
,”
Des. Stud.
,
31
(
5
), pp.
479
498
.10.1016/j.destud.2010.06.005
47.
Viswanathan
,
V.
, and
Linsey
,
J.
,
2011
, “
Design Fixation in Physical Modeling: An Investigation on the Role of Sunk Cost
,”
ASME
Paper No. DETC2011-47862.10.1115/DETC2011-47862
48.
Ishibashi
,
K.
, and
Okada
,
T.
,
2006
, “
Exploring the Effect of Copying Incomprehensible Exemplars on Creative Drawings
,”
Proceedings 28th Annual Conference Cognitive Science Society
, Vancouver, BC, Canada July 26–29, pp. 1545–1550.
49.
Moreno
,
D. P.
,
Yang
,
M. C.
,
Hernandez
,
A.
, and
Wood
,
K. L.
,
2014
, “
Creativity in Transactional Design Problems: Non-Intuitive Findings of an Expert Study Using Scamper
,”
International Design Conference, Human Behavior and Design
, Dubrovnik, Croatia, May 19–22, 2014, pp. 569–578.
50.
Moreno
,
D. P.
,
Yang
,
M.
,
Hernandez
,
A.
,
Linsey
,
J.
, and
Wood
,
K. L.
,
2014
, “
A Step Beyond to Overcome Design Fixation: A Design-by-Analogy Approach
,” Design Computing and Cognition DCC '14, June 23–25.
51.
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2007
, “
Design Ideas and Impasses: The Role of Open Goals
,”
Proceedings of the 16th International Conference on Engineering Design
, Paper No. DS42_P_114, July 28–31, 2007, pp. 351–352.
52.
Smith
,
S. M.
,
1995
, “
Getting Into and Out of Mental Ruts: A theory of Fixation, Incubation: Insight
,”
The Nature of Insight
,
J. E.
Davidson
, ed., The
MIT Press
,
Cambridge, MA
, pp.
229
251
.
53.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2008
, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
,
29
(
3
), pp.
203
221
.10.1016/j.destud.2008.01.003
54.
Kalogerakis
,
K.
,
Luthje
,
C.
, and
Herstatt
,
C.
,
2010
, “
Developing Innovations Based on Analogies: Experience from Design and Engineering Consultants
,”
J. Product Innovation Manage.
,
27
(
3
), pp.
418
436
.10.1111/j.1540-5885.2010.00725.x
55.
Gick
,
M. L.
, and
Holyoak
,
K. J.
,
1980
, “
Analogical Problem Solving
,”
Cognit. Psychol.
12
(
3
), pp.
306
355
.10.1016/0010-0285(80)90013-4
56.
Casakin
,
H.
, and
Goldschmidt
,
G.
,
1999
, “
Expertise and the Use of Visual Analogy: Implications for Design Education
,”
Des. Stud.
,
20
(
2
), pp.
153
175
.10.1016/S0142-694X(98)00032-5
57.
Clement
,
C. A.
,
1994
, “
Effect of Structural Embedding on Analogical Transfer: Manifest Versus Latent Analogs
,”
Am. J. Psychol.
,
107
(
1
), pp.
1
39
.10.2307/1423287
58.
Clement
,
C. A.
,
Mawby
,
R.
, and
Giles
,
D. E.
,
1994
, “
The Effects of Manifest Relational Similarity on Analog Retrieval
,”
J. Mem. Lang.
,
33
(
3
), pp.
396
420
.10.1006/jmla.1994.1019
59.
Gentner
,
D.
, and
Smith
,
L.
, “
Analogical Reasoning, 2012
,”
Encyclopedia of Human Behavior
, 2nd ed.,
V. S.
Ramachandran
, ed.,
Elsevier
,
Oxford, UK
, pp.
130
136
.
60.
Gentner
,
D.
, and
Markman
,
A. B.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(
1
), pp.
45
56
.10.1037/0003-066X.52.1.45
61.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2005
, “
Spontaneous Access and Analogical Incubation Effects
,”
Creat. Res. J.
,
17
(
2–3
), pp.
207
220
.10.1080/10400419.2005.9651480
62.
Hey
,
J.
,
Linsey
,
J.
,
Agogino
,
A. M.
, and
Wood
,
K. L.
,
2008
, “
Analogies and Metaphors in Creative Design
,”
Int. J. Eng. Educ.
,
24
, pp.
283
294
.
63.
Herstatt
,
C.
, and
Kalogerakis
,
K.
,
2005
, “
How to Use Analogies for Breakthrough Innovations
,”
Int. J. Innovation Technol. Manage.
,
2
(
3
), pp.
331
347
.10.1142/S0219877005000538
64.
Linsey
,
J.
,
Laux
,
J.
,
Clauss
,
E. F.
,
Wood
,
K.
, and
Markman
,
A.
,
2007
, “
Increasing Innovation: A Trilogy of Experiments Towards a Design-by-Analogy Method
,”
ASME
Paper No. DETC2007-34948.10.1115/DETC2007-34948
65.
Markman
,
A.
,
1999
, “
Chapter 1: Foundations
,”
Knowledge Representation
,
Lawrence Erlbaum Associates
,
Mahwah, NJ
, pp.
1
26
.
66.
Gick
,
M. L.
, and
Holyoak
,
K. J.
,
1983
, “
Schema Induction and Analogical Transfer
,”
Cognit. Psychol.
,
15
(
1
), pp.
1
38
.10.1016/0010-0285(83)90002-6
67.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Preinventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
.10.3758/BF03195939
68.
Damle
,
A.
, and
Smith
,
P. J.
,
2009
, “
Biasing Cognitive Processes During Design: The Effects of Color
,”
Des. Stud.
,
30
(
5
), pp.
521
540
.10.1016/j.destud.2009.01.001
69.
McKoy
,
F. L.
,
Vargas-Hernandez
,
N.
,
Summers
,
J. D.
, and
Shah
,
J. J.
, 2001, “
Influence of Design Representation on Effectiveness of Idea Generation
,”
ASME
Paper No. DETC01/DTM-21685.http://www.chriswildrick.com/images/collaboration%20texts/recommended/design%20sketching.pdf
70.
Goldschmidt
,
G.
, and
Sever
,
A. L.
,
2011
, “
Inspiring Design Ideas With Texts
,”
Des. Stud.
,
32
(
2
), pp.
139
155
.10.1016/j.destud.2010.09.006
71.
Dahl
,
D. W.
, and
Moreau
,
P.
,
2002
, “
The Influence and Value of Analogical Thinking During New Product Ideation
,”
J. Mark. Res.
,
39
(
1
), pp.
47
60
.10.1509/jmkr.39.1.47.18930
72.
Wilson
,
J. O.
,
Rosen
,
D.
,
Nelson
,
B. A.
, and
Yen
,
J.
,
2010
, “
The Effects of Biological Examples in Idea Generation
,”
Des. Stud.
,
31
(
2
), pp.
169
186
.10.1016/j.destud.2009.10.003
73.
Chiu
,
I.
, and
Shu
,
L. H.
,
2011
, “
The Effects of Language Stimuli on Design Creativity
,” Canadian Engineering Education Association, June 6–8.
74.
Dunbar
,
K.
,
1997
, “
How Scientists Think: On-Line Creativity and Conceptual Change in Science
,”
Creative Thought: An Investigation of Conceptual Structures and Processes
,
T. B.
Ward
,
S. M.
Smith
,
J.
Vaid
, eds.,
American Psychological Association
,
Washington, DC
.
75.
Weisberg
,
R. W.
,
2009
, “
On ‘Out-of-the-Box’ Thinking in Creativity
,”
Tools for Innovation
,
K. W. A.
Markman
, ed.,
Oxford University Press
,
New York
, pp.
23
47
.
76.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.10.1115/1.4004396
77.
Duncker
,
K.
,
1945
,
On Problem Solving
,
American Psychological Association
,
Washington, DC
.
78.
Maier
,
N. R. F.
,
1931
, “
Reasoning in Humans. II. The Solution of a Problem and Its Appearance in Consciousness
,”
J. Comp. Psychol.
,
12
(
2
), pp.
181
194
.10.1037/h0071361
79.
Adamson
,
R. E.
,
1952
, “
Functional Fixedness as Related to Problem Solving: A Repetition of Three Experiments
,”
J. Exp. Psychol.
,
44
(
4
), pp.
288
291
.10.1037/h0062487
80.
Perttula
,
M.
, and
Sipila
,
P.
,
2007
, “
The Idea Exposure Paradigm in Design Idea Generation
,”
J. Eng. Des.
,
18
(
1
), pp.
93
102
.10.1080/09544820600679679
81.
Cross
,
N.
,
2004
, “
Expertise in Design: An Overview
,”
Des. Stud.
,
25
(
5
), pp.
427
441
.10.1016/j.destud.2004.06.002
82.
Novick
,
L. R.
,
1988
, “
Analogical Transfer, Problem Similarity, and Expertise
,”
J. Exp. Psychol.: Learn., Mem. Cognit.
,
14
(
3
), pp.
510
520
.10.1037/0278-7393.14.3.510
83.
Kolodner
,
J. L.
,
1997
, “
Educational Implications of Analogy: A View From Case-Based Reasoning
,”
Am. Psychol.
,
52
(
1
), pp.
57
66
.10.1037/0003-066X.52.1.57
84.
Ball
,
L. J.
,
Ormerod
,
T. C.
, and
Morley
,
N. J.
,
2004
, “
Spontaneous Analogising in Engineering Design: A Comparative Analysis of Experts and Novices
,”
Des. Stud.
,
25
(
5
), pp.
495
508
.10.1016/j.destud.2004.05.004
85.
Ozkan
,
O.
, and
Dogan
,
F.
,
2013
, “
Cognitive Strategies of Analogical Reasoning in Design: Differences Between Expert and Novice Designers
,”
Des. Stud.
,
34
(
2
), pp.
161
192
.10.1016/j.destud.2012.11.006
86.
Moreno
,
D. P.
,
Hernandez
,
A.
,
Yang
,
M.
,
Otto
,
K.
,
Holtta-Otto
,
K.
,
Linsey
,
J.
,
Wood
,
K. L.
, and
Linden
,
A.
, 2014, “
Fundamental Studies in Design-by-Analogy: A Focus on Domain-Knowledge Expers and Applications to Transactional Design Problems
,”
Des. Stud.
,
35
(3), pp.
232
272
.
87.
Ahmed
,
S.
, and
Christensen
,
B. T.
,
2009
, “
An In Situ Study of Analogical Reasoning in Novice and Experienced Design Engineers
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111004
.10.1115/1.3184693
88.
Cheong
,
H.
,
Hallihan
,
G.
, and
Shu
,
L. H.
,
2012
, “
Understanding Analogical Reasoning in Biomimetic Design: An Inductive Approach
,” paper presented at the
Design Computing and Cognition
, June 9, pp. 21–39.10.1007/978-94-017-9112-0_2
89.
Feng
,
T. W.
,
Cheong
,
H.
, and
Shu
,
L. H.
,
2014
, “
Effects of Abstraction on Selecting Relevant Biological Phenomena for Biomimetic Design
,” paper presented at the
ASME
Paper No: IDETC2014/4028173, in press.10.1115/1.4028173
90.
Helms
,
M.
,
Vattam
,
S.
, and
Goel
,
A.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
, pp.
606
622
.10.1016/j.destud.2009.04.003
91.
Currie
,
J.
,
Fung
,
K.
,
Mazza
,
A. G.
, and
Wallace
,
J. S.
,
2009
, “
A Comparison of Biomimetic Design and TRIZ Applied to the Design of a Proton Exchange Membrane Fuel Cell
,” Canadian Engineering Education Association, July 27–29.
92.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2008
, “
The Effect of Representation of Triggers on Design Outcomes
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
101
116
.10.1017/S0890060408000073
93.
Vattam
,
S.
,
Helms
,
M.
, and
Goel
,
A.
,
2010
, “
A Content Account of Creative Analogies in Biologically Inspired Design
,”
AIEDAM
,
24
(
4
), pp.
467
481
.10.1017/S089006041000034X
94.
Cheong
,
H.
,
Hallihan
,
G.
, and
Shu
,
L. H.
,
2014
, “
Design Problem Solving With Biological Analogies: A Verbal Protocol Study
,”
AIEDAM
,
28
(
1
), pp.
27
47
.10.1017/S0890060413000486
95.
Helms
,
M.
, and
Goel
,
A.
,
2012
, “
Analogical Problem Evolution in Biologically Inspired Design
,” Design Computing and Cognition, June 9.
96.
Weissburg
,
M.
,
Tovey
,
C.
, and
Yen
,
J.
,
2010
, “
Enhancing Innovation Through Biologically Inspired Design
,”
Adv. Nat. Sci.
,
3
, pp.
1
16
.
97.
Glier
,
M.
,
Tsenn
,
J.
,
Linsey
,
J.
, and
McAdams
,
D.
,
2012
, “
Evaluating the Directed Method for Bioinspired Design
,”
ASME
Paper No. DETC2012-7151.10.1115/DETC2012-7151
98.
Glier
,
M.
,
Tsenn
,
J.
,
Linsey
,
J.
, and
McAdams
,
D.
,
2014
, “
Evaluating the Directed Intuitive Approach for Bioinspired Design
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071012
.10.1115/1.4026825
99.
Linsey
,
J.
, and
Viswanathan
,
V.
,
2014
, “
Overcoming Cognitive Challenges in Bioinspired Design and Analogy
,”
Biologically Inspired Design
,
A.
Goel
, ed.,
Springer
,
London, UK
, pp.
221
244
.
100.
Shu
,
L. H.
,
Ueda
,
K.
,
Chiu
,
I.
, and
Cheong
,
H.
,
2011
, “
Biologically Inspired Design
,”
CIRP Ann.—Manuf. Technol.
,
60
(
2
), pp.
673
693
.10.1016/j.cirp.2011.06.001
101.
White
,
C.
,
Wood
,
K. L.
, and
Jensen
,
D.
,
2012
, “
From Brainstorming to C-Sketch to Principles of Historical Innovators: Ideation Techniques to Enhance Student Creativity
,”
J. STEM Educ.
,
13
, pp.
12
25
.
102.
Ball
,
P.
,
2001
, “
Life's Lessons in Design
,”
Nature
,
409
, pp.
413
416
.10.1038/35053198
103.
Sarkar
,
P.
,
Phaneendra
,
S.
, and
Chakrabarti
,
A.
,
2008
, “
Developing Engineering Products Using Inspiration From Nature
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
3
), p.
031001
.10.1115/1.2956995
104.
Sartori
,
J.
,
Pal
,
U.
, and
Chakrabarti
,
A.
,
2010
, “
A Methodology for Supporting 'Transfer' in Biomimetic Design
,” AIEDAM, A. Chakrabarti and L. Shu, eds.
24
, pp.
483
505
.
105.
Telenko
,
C.
,
Sosa
,
R.
, and
Wood
,
K. L.
, “
Changing Conversations and Perceptions: The Research and Practice of Design Science
,”
Impact of Design Research on Practice (IDRP)
, U. Lindeman and A. Chakrabarti, eds.,
Springer-Verlag, London, UK
, (in press).
106.
Glier
,
M.
,
McAdams
,
D.
, and
Linsey
,
J.
,
2011
, “
Concepts in Biomimetic Design: Methods and Tools to Incorporate into a Biomimetic Design Course
,” paper presented at the
ASME
Paper No. DETC2011-48571.10.1115/DECT2011-48571
You do not currently have access to this content.