In this study, the mechanical design of a fully flexible valve actuation system (FFVA) for intake valves of naturally aspirated internal combustion engines is optimized. The original FFVA design used a connecting rod in order to transform the rotating motion of the actuator to translating motion of the valve. In the improved design introduced here, the connecting rod is replaced by a flexible linkage. This step is taken in order to eliminate wear and play in the mechanical connections. A detailed design procedure is presented to optimize the heavy fatigue load on this element. Simulations and experimental tests are carried out in order to validate the system performance. It is shown that valve trajectory and energy consumption of the actuation system obtained by simulations are consistent with those observed experimentally. The present redesigned FFVA system then provides more reliable valve motion than previously shown designs.

References

1.
Pischger
,
M.
,
Salber
,
W.
,
Staay
,
F. V. D.
,
Baumgarten
,
H.
, and
Kemper
,
H.
, 2000, “
Low Fuel Consumption and Low Emissions—Electromechanical Valvetrain in Vehicle Operation
,”
Int. J. Autom. Tech.
, pp.
17
25
.
2.
Hoffmann
,
W.
,
Peterson
,
K.
, and
Stefanopoulou
,
A. G.
, 2003, “
Iterative Learning Control for Soft Landing of Electromechanical Valve Actuator in Camless Engines
,”
IEEE Trans. Control Syst. Technol.
,
11
(
2
), pp.
174
184
.
3.
Chang
,
W. S.
,
Parlikar
,
T. A.
,
Seeman
,
M. D.
,
Perreault
,
D. J.
,
Kassakian
,
J. G.
, and
Keim
,
T. A.
, 2002, “
A New Electromagnetic Valve Actuator
,”
IEEE Workshop on Power Electronics in Transportation
, pp.
109
118
,
Auburn Hills, MI
, October 24–25.
4.
Peterson
,
K.
,
Stefanopoulou
,
A.
,
Megli
,
T.
, and
Haghgooie
,
M.
, 2002,
“Output Observer Based Feedback for Soft Landing of Electromechanical Camless Valve train Actuator,”
Proceedings of the 2002 American Control Conference
, Vol.
1–6
, pp.
1413
1418
.
5.
Parlikar
,
T. A.
,
Chang
,
W. S.
,
Qiu
,
Y. H.
,
Seeman
,
M. D.
,
Perreault
,
D. J.
,
Kassakian
,
J. G.
, and
Keim
,
T. A.
, 2005, “
Design and Experimental Implementation of an Electromagnetic Engine Valve Drive
,”
IEEE/ASME Trans. Mechatron.
,
10
(
5
), pp.
482
494
.
6.
Tai
,
C.
,
Tsao
,
T. C.
, and
Levin
,
M. B.
, 2000,
“Adaptive Nonlinear Feedforward Control of an Electrohydraulic Camless Valvetrain,”
Proceedings of the 2000 American Control Conference
, Vol.
1–6
, pp.
1001
1005
.
7.
Wong
,
P. K.
,
Tam
,
L. M.
, and
Li
,
K.
, 2008, “
Modeling and Simulation of a Dual-Mode Electrohydraulic Fully Variable Valve Train For Four-Stroke Engine
,”
Int. J. Autom. Technol.
,
9
(
5
), pp.
509
521
.
8.
Pischinger
,
F.
, and
Kreuter
,
P.
, 1984, “
Electromagenetically Operated Actuators
,” U.S. Patent No. 4,455,543.
9.
Chladny
,
R. R.
,
Koch
,
C. R.
, and
Lynch
,
A. F.
, 2005, “
Modeling Automotive Gas-Exchange Solenoid Valve Actuator
,”
IEEE Trans. Magn.
,
41
(
3
), pp.
1155
1162
.
10.
Di Gaeta
,
A.
,
Glielmo
,
L.
,
Giglio
,
V.
, and
Police
,
G.
, 2008, “
Modeling of an Electromechanical Engine Valve Actuator Based on a Hybrid analytical–FEM Approach
,”
IEEE/ASME Trans. Mechatron.
,
13
(
6
), pp.
625
637
.
11.
Zhao
,
J.
, and
Seethaler
,
R. J.
, 2010
“Compensating Combustion Forces for Automotive Electromagnetic Valves,”
Mechatronics
,
20
(
4
), pp.
433
441
.
12.
Haskara
,
I.
,
Kokotovic
,
V.
, and
Mianzo
,
L.
, 2004, “
Control of an Elctromechanical Valve Actuator for a Camless Engine
,”
Int. J. Robust Nonlinear Control
,
14
, pp.
561
579
.
13.
Peterson
,
K. S.
, and
Stefanopoulou
,
A. G.
, 2004, “
Extremum Seeking Control for Soft Landing of an Electromechanical Valve Actuator
,”
Automatica
,
40
, pp.
1063
1069
.
14.
Peterson
,
K. S.
,
Grizzle
,
J. W.
, and
Stefanopoulou
,
A. G.
, 2006, “
Nonlinear Control for Magnetic Levitation of Automotive Engine Vales
,”
IEEE Trans. Controls Syst. Technol.
,
14
(
2
), pp.
346
354
.
15.
Eyabi
,
P.
, and
Washington
,
G.
, 2006, “
Modeling and Sensorless Control of an Electromagnetic Valve Actuator
,”
Mechatronics
,
16
, pp.
159
175
.
16.
Chung
,
S. K.
,
Koch
,
C. R.
, and
Lynch
,
A. F.
, 2007, “
Flatness-Based Feedback Control of an Automotive Solenoid Valve
,”
IEEE Trans. Control Syst. Technol.
,
15
(
2
), pp.
394
401
.
17.
Mianzo
,
L.
, and
Peng
,
H.
, 2007, “
Output Feedback H Preview Control of an Electromechanical Valve Actuator
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
428
437
.
18.
Chladny
,
R. R.
, and
Koch
,
C. R.
, 2008, “
Flatness-Based Tracking of an Electromechanical Variable Valve Timing Actuator With Disturbance Observer Feed Forward Compensation
,”
IEEE Trans Control Syst. Technol.
,
16
(
4
), pp.
652
663
.
19.
Tsai
,
J.
,
Koch
,
C. R.
, and
Saif
,
M.
, 2011, “
Cycle Adaptive Feedforward Approach Controllers for an Electromagnetic Valve Actuator
,”
IEEE Trans. Control Syst. Technol.
,
PP
(
99
), pp.
1
9
.
20.
Duerr
,
K.
, and
Seethaler
,
R.
, 2008,
“Time Optimum Cam Synthesis For Spring Driven Cams,”
Proceedings of ASME IDETC/CIE
, Vol.
2
, pp.
471
479
.
21.
Seethaler
,
R.
, and
Duerr
,
K.
, 2009,
“Electromagnetic Valve Actuation With Two Configurations,”
Proceedings of ASME IDETC/CIE
, Vol.
7
, pp.
391
398
.
22.
Henry
,
R. R.
, 2001, “
Single-Cylinder Engine Tests of a Motor-Driven, Variable-Valve Actuator
,” SAE Tech. Paper Series, Paper No. 2001-01-0241.
23.
Zhao
,
J.
, and
Seethaler
,
R.
, 2011, “
A Fully Flexible Valve Actuation System for Internal Combustion Engines
,”
IEEE/ASME Trans. Mechatron.
,
16
(
2
), pp.
361
370
.
24.
Rokni
,
H.
,
Seethaler
,
R. J.
, and
Milani
,
A.
, 2010,
“Improved Mechanical Design for a Fully Variable Electromechanical Valve Actuation System for Internal Combustion Engines,”
Proceedings of ASME, IMECE, Paper No. IMECE2010-38711.
25.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
132
(
6
), pp.
625
639
.
26.
Awtar
S.
, and
Sen
,
S.
, 2010, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
, p.
081008
.
27.
Awtar
,
S.
, and
Sen
,
S.
, 2010, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
, p.
081009
.
You do not currently have access to this content.