A time-dependent reliability analysis method is presented for dynamic systems under uncertainty using a niching genetic algorithm (GA). The system response is modeled as a parametric random process. A double-loop optimization algorithm is used. The inner loop calculates the maximum response in time, using a hybrid (global-local) optimization algorithm. A global GA quickly locates the vicinity of the global maximum, and a gradient-based optimizer subsequently refines its location. A time-dependent problem is, therefore, transformed into a time-independent one. The outer loop calculates multiple most probable points (MPPs), which are commonly encountered in vibration problems. The dominant MPPs with the highest contribution to the probability of failure are identified. A niching GA is used because of its ability to simultaneously identify multiple solutions. All potential MPPs are initially identified approximately, and their location is efficiently refined using a gradient-based optimizer with local metamodels. For computational efficiency, the local metamodels are built using mostly available sample points from the niching GA. Among all MPPs, the significant and independent ones are identified using a correlation analysis. Approximate limit states are built at the identified MPPs, and the system failure probability is estimated using bimodal bounds. The vibration response of a cantilever plate under a random oscillating pressure load and a point load is used to illustrate the present method and demonstrate its robustness and efficiency. A finite-element model is used to calculate the plate response.

1.
Chen
,
S.
,
Nikolaidis
,
E.
, and
Cudney
,
H. H.
, (1999), “
Comparison of Probabilistic and Fuzzy Set Methods for Designing Under Uncertainty
,”
Proceedings of AIAA/ASME/ASCE/AHS/ASCE Structures, Structural Dynamics, and Materials Conference and Exhibit
, pp.
2860
2874
.
2.
Zou
,
T.
,
Mourelatos
,
Z. P.
,
Hahadevan
,
S.
, and
Tu
,
J.
, 2003, “
An Indicator Response Surface-Based Monte Carlo Method for Efficient Component and System Reliability Analysis
,”
Proceedings of DETC’03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, IL, Sept. 2–6.
3.
Lee
,
S. -Y.
, 2006, “
Efficient Probabilistic Vibration Analysis of Complex Structures Using Substructuring and Reliability Techniques
,” Ph.D. thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
4.
Castanier
,
M. P.
,
Tan
,
Y. -C.
, and
Pierre
,
C.
, 2001, “
Characteristic Constraint Modes for Component Mode Synthesis
,”
AIAA J.
0001-1452,
39
(
6
), pp.
1182
1187
.
5.
Wu
,
Y. -T.
, 1998, “
Methods for Efficient Probabilistic Analysis of System With Large Numbers of Random Variables
,”
Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis Optimization
, St. Louis, MO, Sept. 15–18, Paper No. AIAA 98-4908.
6.
Melchers
,
R. E.
, 2001,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
.
7.
Du
,
X.
, and
Chen
,
W.
, 2001, “
A Most Probable Point Based Method for Uncertainty Analysis
,”
J. Design Manuf. Autom.
1532-0375,
4
(
1
), pp.
47
66
.
8.
Shan
,
S.
, and
Wang
,
G.
, 2006, “
Failure Surface Frontier for Reliability Assessment of Expensive Performance Functions
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1227
1232
.
9.
Goldberg
,
D. E.
, and
Richardson
,
J.
, 1987, “
Genetic Algorithms With Sharing for Multimodal Function Optimization
,”
Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic Algorithms and Their Application
, pp.
41
49
.
10.
Horn
,
J.
, 1997, “
The Nature of Niching: Genetic Algorithms and the Evolution of Optimal Cooperative Populations
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
11.
Cavicchio
,
D. J.
, (1970), “
Adaptive Search Using Simulated Evolution
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
12.
De Jong
,
K. A.
, 1975, “
An Analysis of the Behavior of a Class of Genetic Adaptive Systems
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
13.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
14.
Miller
,
B. L.
, and
Shaw
,
M. J.
, 1996, “
Genetic Algorithms With Dynamic Niche Sharing for Multimodal Function Optimization
,”
Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC’96)
,
IEEE
,
New York
.
15.
Sareni
,
B.
, and
Krahenbuhl
,
L.
, 1998, “
Fitness Sharing and Niching Methods Revisited
,”
IEEE Trans. Evol. Comput.
1089-778X,
2
(
3
), pp.
97
106
.
16.
Yin
,
X.
, and
Germay
,
N.
, 1993, “
A Fast Genetic Algorithm With Sharing Scheme Using Cluster Methods in Multimodal Function Optimization
,”
Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms
,
R. F.
Albrecht
,
C. R.
Reeves
, and
N. C.
Steele
, eds.,
Springer-Verlag
,
Berlin
, pp.
450
457
.
17.
Shir
,
O. M.
, 2004, “
Niching in Evolution Strategies
,” M.S. thesis, Leiden University, Leiden, Netherlands
18.
Zaharie
,
D.
, 2004, “
A Multipopulation Differential Evolution Algorithm for Multimodal Optimization
,”
Proceedings of Mendel 2004, Tenth International Conference on Soft Computing
,
R.
Matousek
and
P.
Osmera
, eds., Brno.
19.
Singh
,
G.
, and
Deb
,
K.
, 2006, “
Comparison of Multi-Modal Optimization Algorithms Based on Evolutionary Algorithms
,”
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
, Seattle, WA.
20.
Dick
,
G.
, and
Whigham
,
P.
, 2008, “
Spatially-Structured Sharing Technique for Multimodal Problems
,”
J. Comput. Sci.Technol.
,
23
(
1
), pp.
64
76
.
21.
Brits
,
R.
,
Engelbrecht
,
A. P.
, and
van den Bergh
,
F.
, (2002), “
A Niching Particle Swarm Optimizer
,”
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002)
, pp.
692
696
.
22.
Parrott
,
D.
, and
Li
,
X.
, 2006, “
Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation
,”
IEEE Trans. Evol. Comput.
1089-778X,
10
(
4
), pp.
440
458
.
23.
Cornell
,
C. A.
, 1967, “
Bounds on the Reliability of Structural Systems
,”
J. Struct. Div.
0044-8001,
93
, pp.
171
200
.
24.
Ditlevsen
,
O.
, 1979, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
0360-1218,
7
(
4
), pp.
453
472
.
25.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
(
1
), pp.
111
121
.
26.
Rackwitz
,
R.
, and
Fiessler
,
B.
, 1978, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
0045-7949,
9
(
5
), pp.
489
494
.
27.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
0733-9399,
110
(
3
), pp.
357
366
.
28.
Der Kiureghian
,
A.
,
Lin
,
L. Z.
, and
Hwang
,
S. J.
, 1987, “
Second-Order Reliability Approximation
,”
J. Eng. Mech.
0733-9399,
113
(
8
), pp.
1208
25
.
29.
Tvedt
,
L.
, 1990, “
Distribution of Quadratic Forms in Normal Space-Application to Structural Reliability
,”
J. Eng. Mech.
0733-9399,
116
(
6
), pp.
1183
1197
.
30.
Cai
,
G. Q.
, and
Elishakoff
,
I.
, 1994, “
Refined Second-Order Reliability Analysis
,”
Struct. Saf.
,
14
, pp.
267
276
. 0167-4730
31.
Zhao
,
Y.
, and
Ono
,
T.
, 1999, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
95
112
.
32.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
, 1998, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Safety
0167-4730,
20
(
1
), pp.
37
49
.
33.
Mahadevan
,
S.
, and
Shi
,
P.
, 2001, “
Multiple Linearization Method for Nonlinear Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
127
(
11
), pp.
1165
1173
.
34.
Gollwitzer
,
S.
, and
Rackwitz
,
R.
, 1988, “
An Efficient Numerical Solution to the Multinormal Integral
,”
Probab. Eng. Mech.
0266-8920,
3
(
2
), pp.
98
101
.
35.
Bucher
,
C. G.
, 1988, “
Adaptive Sampling—An Iterative Fast Monte Carlo Procedure
,”
Struct. Safety
0167-4730,
5
, pp.
119
126
.
36.
Melchers
,
R. E.
, 1989, “
Importance Sampling in Structural Systems
,”
Struct. Safety
0167-4730,
6
, pp.
3
10
.
37.
Schueller
,
G. I.
, and
Stix
,
R.
, 1987, “
A Critical Appraisal of Methods to Determine Failure Probabilities
,”
Struct. Safety
0167-4730,
4
(
4
), pp.
293
309
.
38.
Fu
,
G.
, and
Moses
,
F.
, 1993, “
Multimodal Simulation Method for System Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
119
(
6
), pp.
1173
1179
.
39.
Schueller
,
G. I.
,
Pradlwarter
,
H. J.
, and
Bucher
,
C. G.
, 1991, “
Efficient Computational Procedures for Reliability Estimate of MDOF-Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
26
(
6
), pp.
961
974
.
40.
Ditlevsen
,
O.
, and
Bjerager
,
P.
, 1987, “
Plastic Reliability Analysis by Directional Simulation
,” Technical University of Denmark, DCAMM Report No. 353.
41.
Karamchandani
,
A.
,
Bjerager
,
P.
, and
Cornell
,
C. A.
, 1989, “
Adaptive Importance Sampling
,”
Fifth International Conference on Structural Safety and Reliability
,
A. H.-S.
Ang
,
M.
Shinozuka
, and
G. I.
Schueller
, eds.,
ASCE
,
New York
, pp.
855
862
.
42.
Wu
,
Y. -T.
, 1994, “
Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1717
1723
.
43.
Cazuguel
,
M.
,
Renaud
,
C.
, and
Cognard
,
J. Y.
, 2006, “
Time-Variant Reliability of Nonlinear Structures: Application to a Representative Part of a Plate Floor
,”
Qual. Reliab. Eng. Int.
,
22
, pp.
101
118
. 0748-8017
44.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
, 2004, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
0951-8320,
84
, pp.
75
86
.
45.
Hagen
,
O.
, and
Tvedt
,
L.
, 1991, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
0733-9399,
117
(
10
), pp.
2201
2210
.
46.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
, 1996,
Structural Reliability Methods
,
Wiley
,
New York
.
47.
Shinozuka
,
M.
, 1964, “
Probability of Failure Under Random Loading
,”
J. Engrg. Mech. Div.
0044-7951,
90
, pp.
147
171
.
48.
Schall
,
G.
,
Faber
,
M. H.
, and
Rackwitz
,
R.
, 1991, “
The Ergodicity Assumption for Sea States in the Reliability Estimation of Offshore Structures
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
113
, pp.
241
246
.
49.
Engelund
,
S.
,
Rackwitz
,
R.
, and
Lange
,
C.
, 1995, “
Approximations of First Passage Times for Differentiable Processes Based on Higher Order Threshold Crossings
,”
Probab. Eng. Mech.
0266-8920,
10
(
1
), pp.
53
60
.
50.
Rackwitz
,
R.
, 1998, “
Computational Techniques in Stationary and Non-Stationary Load Combination—A Review and Some Extensions
,”
J. Struct. Eng.
0733-9445,
25
(
1
), pp.
1
20
.
51.
Schueller
,
G. I.
, 1997, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
12
(
4
), pp.
197
321
.
52.
Sudret
,
B.
, and
Der Kiureghian
,
A.
, 2000, “
Stochastic Finite Element Methods and Reliability. A State-of-the-Art Report
,” University of California, Report No. UCB/SEMM-2000/08.
53.
Wirsching
,
P. H.
,
Paez
,
T. L.
, and
Ortiz
,
H.
, 1995,
Random Vibrations: Theory and Practice
,
Wiley
,
New York
.
54.
Daum
,
D.
,
Deb
,
K.
, and
Branke
,
J.
, (2007). “
Reliability-Based Optimization for Multiple Constraints With Evolutionary Algorithms
,”
Proceedings of the Congress on Evolutionary Computation (CEC-2007)
, Singapore, pp.
911
918
.
55.
Houck
,
C. R.
,
Joines
,
J. A.
, and
Kay
,
M. G.
, 1995, “
Genetic Algorithm Optimization Tooblox (GAOT) for MATLAB 5
,” available: http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/.
56.
Deb
,
K.
, and
Goldberg
,
D. E.
, (1989), “
An Investigation of Niche and Species Formation in Genetic Function Optimization
,”
Proceedings of the 3rd International Conference on Genetic Algorithms
, Washington, DC,
J. D.
Schaffer
, ed., pp.
42
50
.
57.
Mahfoud
,
S. W.
, 1995, “
Population Size and Genetic Drift in Fitness Sharing
,”
Proceedings of the Foundations of Genetic Algorithms 3
,
L. D.
Whitley
and
M. D.
Vose
, eds.,
Morgan Kaufmann
,
San Francisco, CA
, pp.
185
224
.
58.
Della Cioppa
,
A.
,
De Stefano
,
C.
, and
Marcelli
,
A.
, 2004, “
On the Role of Population Size and Niche Radius in Fitness Sharing
,”
IEEE Trans. Evol. Comput.
1089-778X,
8
(
6
), pp.
580
592
.
59.
Qing
,
L.
,
Gang
,
W.
,
Zaiyue
,
Y.
, and
Qiuping
,
W.
, 2008, “
Crowding Clustering Genetic Algorithm for Multimodal Function Optimization
,”
Appl. Soft Comput.
1568-4946,
8
(
1
), pp.
88
95
.
60.
Oei
,
C. K.
,
Goldberg
,
D. E.
, and
Chang
,
S.
, 1991, “
Tournament Selection, Niching, and the Preservation of Diversity
,” University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, IlliGal Technical Report No. 91001.
61.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
, 1968, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
0001-1452,
6
(
7
), pp.
1313
1319
.
62.
Birattari
,
M.
, and
Bontempi
,
G.
, (1999), “
The Lazy Learning Toolbox for Use With MATLAB
,” IRIDIA Université Libre de Bruxelles, Brussels, Belgium, http://iridia.ulb.ac.be/~lazy/lazy.matlab.htmlhttp://iridia.ulb.ac.be/~lazy/lazy.matlab.html.
63.
Himmelblau
,
D. M.
, 1972,
Applied Linear Programming
,
McGraw-Hill
,
New York
.
64.
Branin
,
F. H.
, 1972, “
Widely Convergent Methods for Finding Multiple Solutions of Simultaneous Nonlinear Equations
,”
IBM J. Res. Dev.
0018-8646,
16
, pp.
504
522
.
You do not currently have access to this content.