One means of designing reduced vibration mechanisms is to ensure that the mechanism’s natural frequency be sufficiently greater than the driving frequencies of the actuators. In this paper we consider the problem of determining a mechanism’s mass, inertial, and joint stiffness parameters so as to maximize the lowest natural frequency of the mechanism. We show that this leads to a convex programming problem, which is characterized by a global optima that can be found with efficient interior point algorithms. Several case studies involving open and closed chain mechanisms demonstrate the viability of the design methodology.
Issue Section:
Research Papers
Keywords:
actuators,
bars,
chains,
convex programming,
couplings,
design engineering,
vibrations,
mechanism design,
convex programming,
vibration,
parallel mechanism
Topics:
Chain,
Computer programming,
Design,
Optimization,
Stiffness,
Vibration,
Linkages,
Inertia (Mechanics)
1.
Ferretti
, G.
, Magnani
, G.
, and Rocco
, P.
, 1999, “Force Oscillations in Contact Motion of Industrial Robots: An Experimental Investigation
,” IEEE/ASME Trans. Mechatron.
1083-4435, 4
(1
), pp. 86
–91
.2.
Hanselman
, D.
, Hung
, J. Y.
, and Keshura
, Jr., M.
, 1992, “Torque Ripple Analysis in Brushless Permanent Magnet Motor Drives
,” Proceedings of the International Conference on Electric Machines
, Manchester
, UK
, pp. 823
–827
.3.
Park
, J.
, Chang
, P. H.
, Park
, H. S.
, and Lee
, E.
, 2006, “Design of Learning Input Shaping Technique for Residual Vibration Suppression in an Industrial Robot
,” IEEE/ASME Trans. Mechatron.
1083-4435, 11
(1
), pp. 55
–65
.4.
Hopler
, R.
, and Thummel
, M.
, 2004, “Symbolic Computation of the Inverse Dynamics of Elastic Joint Robots
,” Proceedings of the 2004 IEEE International Conference on Robotics and Automation
, Vol. 5
, pp. 4314
–4319
.5.
Tu
, Q.
, and Rastegar
, J.
, 1997, “The Effects of the Manipulator Type on the Vibrational Excitation During Motion
,” Mech. Mach. Theory
0094-114X, 31
(2
), pp. 221
–234
.6.
Boyd
, S.
, and Vandenberghe
, L.
, 2004, Convex Optimization
, Cambridge University Press
, New York
, pp. 43
–112
.7.
Dattorro
, J.
, 2005, Convex Optimization & Euclidean Distance Geometry
, Meboo.8.
Zhang
, Q.
, Wang
, W.
, Allemang
, R. J.
, and Brown
, D. L.
, 1988, “Prediction of Mass Modification for Desired Natural Frequencies
,” Proceedings of the Sixth International Modal Analysis Conference
, pp. 1026
–1032
.9.
Sivan
, D. D.
, and Ram
, Y. M.
, 1996, “Mass and Stiffness Modifications to Achieve Desired Natural Frequencies
,” Commun. Numer. Methods Eng.
1069-8299, 12
, pp. 531
–542
.10.
Wang
, D.
, Jiang
, J. S.
, and Zhang
, W. H.
, 2004, “Optimization of Support Positions to Maximimizing the Fundamental Frequency of Structures
,” Int. J. Numer. Methods Eng.
0029-5981, 61
, pp. 1584
–1602
.11.
Son
, J. H.
, and Kwak
, B. M.
, 1993, “Optimization of Boundary Conditions Maximum Fundamental Frequency of Vibrating Structures
,” AIAA J.
0001-1452, 31
(12
), pp. 2351
–2357
.12.
Kozak
, K.
, Ebert-Uphoff
, I.
, and Singhose
, W.
, 2001, “Analysis of Varying Natural Frequencies and Damping Ratios of a Sample Parallel Manipulator Throughout Its Workspace Using Linearized Equations of Motion
,” Proceedings of 2001 ASME Design Engineering Technical Conferences
.13.
Kozak
, K.
, Voglewede
, P. A.
, Ebert-Uphoff
, I.
, and Singhose
, W.
, 2002, “Concept Paper: On the Significance of the Lowest Linearized Natural Frequency of a Parallel Manipulator as a Performance Measure for Concurrent Design
,” Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
.14.
Furuta
, K.
, Yamakita
, M.
, and Sato
, A.
, 1991, “Suppressing Vibration of Robot Arm Using Frequency-Dependent LQ Method
,” Proceedings of the International Conference IECON’91
, Vol. 1
, pp. 443
–448
.15.
Rappole
, B. B.
, 1992, “Minimizing Residual Vibrations in Flexible Systems
,” M.S. thesis, Department of Mechanical Engineering, MIT, Cambridge, MA.16.
Berglund
, E.
, and Hovland
, G. E.
, 2000, “Automatic Elasticity Tuning of Industrial Robot Manipulators
,” Proceedings of the 39th IEEE Conference on Decision and Control
, Vol. 5
, pp. 5091
–5096
.17.
Zhang
, X.
, Zhou
, J.
, and Ye
, Y.
, 2000, “Optimal Mechanism Design Using Interior-Point Method
,” Mech. Mach. Theory
0094-114X, 35
, pp. 83
–98
.18.
Li
, G.
, Lin
, Z.
, and Allaire
, P. E.
, 2008, “Robust Optimal Balancing of High-Speed Machinery Using Convex Optimization
,” ASME J. Vibr. Acoust.
0739-3717, 130
(3
), p. 031008
.19.
Verschuure
, M.
, Demeulenaere
, B.
, Swevers
, J.
, and De Schutter
, J.
, 2008, “Counterweight Balancing for Vibration Reduction of Elastically Mounted Machine Frames: A Second-Order Cone Programming Approach
,” ASME J. Mech. Des.
1050-0472, 130
(2
), p. 022302
.20.
C. Canudas
de Wit
, B.
Siciliano
, and G.
Bastin
, ed., 1996, Theory of Robot Control
, Springer
, New York
.21.
Angeles
, J.
, 1997, Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms
, Springer-Verlag
, New York
.22.
B.
Siciliano
and K.
Oussama
, eds., 2008, Handbook of Robotics
, Springer-Verlag
, Heidelberg
.23.
Neumann
, K. E.
, 1986, “Robot
,” U.S. Patent No. 4732525.24.
Neumann
, K. E.
, 2002, “Tricept Application
,” Proceedings of the Third Chemnitz Parallel Kinematics Seminar
, Zwickau
, Germany
, pp. 547
–551
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.