A semantic tolerance modeling scheme based on generalized intervals was recently proposed to allow for embedding more tolerancing intents in specifications with a combination of numerical intervals and logical quantifiers. By differentiating a priori and a posteriori tolerances, the logic relationships among variables can be interpreted, which is useful to verify completeness and soundness of numerical estimations in tolerance analysis. In this paper, we present a semantic tolerance analysis approach to estimate size and geometric tolerance stackups based on closed loops of interval vectors. An interpretable linear system solver is constructed to ensure interpretability of numerical results. A direct linearization method for nonlinear systems is also developed. This new approach enhances traditional numerical analysis methods by preserving logical information during computation such that more semantics can be derived from variation estimations.

1.
Chase
,
K. W.
,
Gao
,
J.
, and
Magleby
,
S. P.
, 1995, “
General 2-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
J. Des. Manuf.
0962-4694,
5
(
4
), pp.
263
274
.
2.
Wang
,
Y.
, 2006, “
Semantic Tolerance Modeling Based on Modal Interval Analysis
,”
Proceedings of 2006 NSF Workshop on Reliable Engineering Computing (REC’06)
,
Georgia Institute of Technology
,
Savannah, GA
, pp.
293
318
.
3.
Wang
,
Y.
, 2006, “
Semantic Tolerance Modeling
,”
Proceedings of 2006 ASME International Design Engineering Technical Conferences & The Computer and Information in Engineering Conference (IDETC2006)
,
Philadelphia, PA
, Paper No. DETC2006–99069.
4.
Wang
,
Y.
, 2007, “
Semantic Tolerancing With Generalized Intervals
,”
Comput.-Aided Des.
0010-4485,
4
(
1–4
), pp.
257
266
.
5.
Wang
,
Y.
, “
Semantic Tolerance Modeling With Generalized Intervals
,”
ASME J. Mech. Des.
0161-8458 (to be published).
6.
Hong
,
Y. S.
, and
Chang
,
T.-C.
, 2002, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2425
2459
.
7.
Advanced Tolerancing Techniques
, 1997,
H. C.
Zhang
, ed.,
Wiley
,
New York
.
8.
Wirtz
,
A.
,
Gachter
,
C.
, and
Wipf
,
D.
, 1993, “
From Unambiguously Defined Geometry to the Perfect Quality Control Loop
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
615
618
.
9.
Martinsen
,
K.
, 1995, “
Statistical Process Control Using Vectorial Tolerancing
,”
CIRP/JSPE/ASME Proceedings of Fourth CIRP Seminar on Computer Aided Tolerancing
,
University of Tokyo
,
Tokyo, Japan
, pp.
195
210
.
10.
Rivest
,
L.
,
Fortin
,
C.
, and
Morel
,
C.
, 1994, “
Tolerancing a Solid Model With a Kinematic Formulation
,”
Comput.-Aided Des.
0010-4485,
26
(
6
), pp.
465
476
.
11.
Clément
,
A.
,
Valade
,
C.
, and
Rivière
,
A.
, 1996, “
The TTRSs: 13 Oriented Constraints for Dimensioning, Tolerancing and Inspection
,”
Advanced Mathematical Tools in Metrology III
, pp.
24
41
.
12.
Bourdet
,
P.
, and
Ballot
,
E.
, 1995, “
Geometric Behavior for Computer Aided Tolerancing
,”
CIRP/JSPE/ASME Proceedings of Fourth CIRP Seminar on Computer Aided Tolerancing
,
University of Tokyo
,
Tokyo, Japan
, pp.
143
154
.
13.
Giordano
,
M.
, and
Duret
,
D.
, 1993, “
Clearance Space and Deviation Space
,”
CIRP Proceedings of Third Seminars on Computer Aided Tolerancing
,
Cachan, France
, pp.
179
196
.
14.
Desrochers
,
A.
, 1999, “
Modeling Three-Dimensional Tolerance Zones Using Screw Parameters
,”
Proceedings of 25th ASME Design Automation Conference
, Paper No. DAC-8587.
15.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
, 1994, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
0934-9839,
6
, pp.
191
210
.
16.
Desrochers
,
A.
, and
Riviere
,
A.
, 1997, “
A Matrix Approach to the Representation of Tolerance Zones and Clearances
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
, pp.
630
636
.
17.
Lafond
,
P.
, and
Laperrière
,
L.
, 1999, “
Jacobian-Based Modeling of Dispersions Affecting Pre-Defined Functional Requirements of Mechanical Assemblies
,”
Proceedings of IEEE International Symposium Assembly & Task Planning
, pp.
20
25
.
18.
Descrochers
,
A.
,
Ghie
,
W.
, and
Laperrière
,
L.
, 2003, “
Application of a Unified Jacobian-Torsor Model for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
1
), pp.
2
14
.
19.
Chase
,
K. W.
,
Magleby
,
S. P.
,
Gao
,
J.
, and
Sorensen
,
C. D.
, 1996, “
Including Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies
,”
IIE Trans.
0740-817X,
28
(
10
), pp.
795
807
.
20.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
, 1998, “
Generalized 3-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
IIE Trans.
0740-817X,
30
(
4
), pp.
367
377
.
21.
Sacks
,
E.
, and
Joskowicz
,
L.
, 1998, “
Parametric Kinematic Tolerance Analysis of General Planar Systems
,”
Comput.-Aided Des.
0010-4485,
30
(
9
), pp.
707
714
.
22.
Zou
,
Z.
, and
Morse
,
E. P.
, 2004, “
A Gap-Based Approach to Capture Fitting Conditions for Mechanical Assembly
,”
Comput.-Aided Des.
0010-4485,
36
(
8
), pp.
691
700
.
23.
Zhang
,
G.
, 1996, “
Simultaneous Tolerancing for Design and Manufacturing
,”
Int. J. Prod. Res.
0020-7543,
34
(
12
), pp.
3361
3382
.
24.
Liu
,
S.
, and
Hu
,
S.
, 1997, “
Variation Simulation for Compliant Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
3
), pp.
368
374
.
25.
Chang
,
M.
, and
Gossard
,
D. C.
, 1997, “
Modeling the Assembly of Compliant, Non-Ideal Parts
,”
Comput.-Aided Des.
0010-4485,
29
(
10
), pp.
701
708
.
26.
Long
,
Y.
, and
Hu
,
S.
, 1998, “
A Unified Model for Variation Simulation of Sheet Metal Assemblies
,”
Geometric Design Tolerancing: Theories, Standards, and Applications
,
H. A.
Elmaraghy
, ed.,
Chapman & Hall
,
London
, pp.
208
219
.
27.
Shiu
,
B. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 1996, “
Multi-Stations Sheet Metal Assembly Modeling and Diagnostics
,”
Trans. NAMRI/SME
1047-3025,
24
, pp.
199
204
.
28.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
673
681
.
29.
Huang
,
W.
,
Lin
,
J.
,
Bezdencny
,
M.
,
Kong
,
Z.
, and
Ceglarek
,
D.
, 2007, “
Stream-of-Variation Modeling—Part I: A Generic 3D Variation Model for Rigid Body Assembly in Single Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
821
831
.
30.
Huang
,
W.
,
Lin
,
J.
,
Kong
,
Z.
, and
Ceglarek
,
D.
, 2007, “
Stream-of-Variation (SOVA) Modeling—Part II: A Generic 3D Variation Model for Rigid Body Assembly in Multistation Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
832
842
.
31.
Gardenes
,
E.
,
Sainz
,
M. A.
,
Jorba
,
L.
,
Calm
,
R.
,
Estela
,
R.
,
Mielgo
,
H.
, and
Trepat
,
A.
, 2001, “
Modal Intervals
,”
Reliable Computing
,
7
(
2
), pp.
77
111
.
32.
Markov
,
S.
, 2001, “
On the Algebraic Properties of Intervals and Some Applications
,”
Reliable Computing
,
7
(
2
), pp.
113
127
.
33.
Shary
,
S. P.
, 2002, “
A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity
,”
Reliable Computing
,
8
(
2
), pp.
321
418
.
34.
Moore
,
R. E.
, 1966,
Interval Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
35.
Kaucher
,
E.
, 1980, “
Interval Analysis in the Extended Interval Space IR
,”
Computing Supplement
,
2
, pp.
33
49
.
36.
Sainz
,
M. A.
,
Gardenes
,
E.
, and
Jorba
,
L.
, 2002, “
Formal Solution to Systems of Interval Linear or Non-Linear Equations
,”
Reliable Computing
,
8
(
3
), pp.
189
211
.
37.
Chase
,
K. W.
,
Magleby
,
S. P.
, and
Gao
,
J.
, 1997, “
Tolerance Analysis of Two- and Three-Dimensional Mechanical Assemblies With Small Kinematic Adjustments
,”
Advanced Tolerancing Techniques
,
H. C.
Zhang
, ed.,
Wiley
,
New York
, pp.
103
137
.
You do not currently have access to this content.