Engineering design problems are studied within a multicriteria optimization and decision-making framework. A methodology is developed that modifies the traditional Pareto preference to model designer’s preferences reflected in the relative importance of criteria. The intent is to reduce the number of candidate designs to facilitate the selection of a preferred design. The versatility of this preference model allows it to be incorporated into the problem solution process either a priori, a posteriori, or iteratively, each offering different advantages. In the a priori approach, all Pareto efficient designs that do not satisfy the designer’s preferences are never computed. In the a posteriori approach, a set of Pareto efficient designs is computed and then easily reduced based on the designer’s preferences. Finally, the iterative approach offers the ability to adjust the designer’s preferences by exploring their impact on the reduction of the Pareto efficient design set. The methodology is based on the concepts of convex cones and allowable tradeoff values between criteria. The theoretical foundation of the preference model is presented in the context of engineering design and the methodology is illustrated using a bi-criteria structural design problem and a tri-criteria vehicle dynamics design problem.

1.
Eschenauer
,
H. A.
, 1992, “
Multidisciplinary Modeling and Optimization in Design Processes
,”
Z. Angew. Math. Mech.
0044-2267,
72T
, pp.
438
447
.
2.
Stadler
,
W.
, 1988,
Multicriteria Optimization in Engineering and in the Sciences
,
Plenum Press
, New York.
3.
Stadler
,
W.
, 1995, “
Caveats and Boons of Multicriteria Optimization
,”
Microcomput. Civ. Eng.
0885-9507,
10
, pp.
291
299
.
4.
Stadler
,
W.
, and
Dauer
,
J.
, 1992, “
Multicriteria Optimization in Engineering: A Tutorial and Survey
,” in
Structural Optimization: Status and Future
,
M. P.
Kamat
, ed.,
AIAA
, Washington, DC, pp.
209
249
.
5.
Yu
,
P. L.
, 1974, “
Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems With Multiobjectives
,”
J. Optim. Theory Appl.
0022-3239,
14
(
3
), pp.
319
377
.
6.
Wan
,
J.
, and
Krishnamurty
,
S.
, 1999, “
Comparison-Based Decision Making in Engineering Design
,”
Proceedings of the ASME Design Theory and Methodology Conference
.
7.
Wan
,
J.
, and
Krishnamurty
,
S.
, 2001, “
Learning-Based Preference Modeling in Engineering Design Decision-Making
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
191
198
.
8.
Messac
,
A.
, 1996, “
Physical Programming: Effective Optimization for Computational Design
,”
AIAA J.
0001-1452,
34
(
1
), pp.
149
158
.
9.
Tappeta
,
R. V.
,
Renaud
,
J. E.
,
Messac
,
A.
, and
Sundararaj
,
G. J.
, 2000, “
Interactive Physical Programming: Tradeoff Analysis and Decision Making in Multicriteria Optimization
,”
AIAA J.
0001-1452,
38
(
5
), pp.
917
926
.
10.
Messac
,
A.
,
Sukam
,
C. P.
, and
Melachrinoudis
,
E.
, 2001, “
Mathematical and Pragmatic Perspectives of Physical Programming
,”
AIAA J.
0001-1452,
39
(
5
),
885
893
.
11.
Geoffrion
,
A.
,
Dyer
,
J.
, and
Feinberg
,
A.
, 1972, “
An Interactive Approach for MultiCriterion Optimization With an Application to the Operation of an Academic Department
,”
Manage. Sci.
0025-1909,
19
, pp.
357
368
.
12.
Yang
,
J. B.
, and
Li
,
D.
, 2002, “
Normal Vector Identification and Interactive Tradeoff Analysis Using Minimax Formulation in Multiobjective Optimization
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
32
(
3
), pp.
305
319
.
13.
Maddulapalli
,
K.
,
Azarm
,
S.
, and
Boyars
,
A.
, 2005, “
Interactive Product Design Selection With an Implicit Value Function
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
367
377
.
14.
Narayanan
,
S.
, and
Azarm
,
S.
, 1999, “
On Improving Multiobjective Genetic Algorithms for Design Optimization
,”
Struct. Optim.
0934-4373,
18
, pp.
146
155
.
15.
Narayanan
,
S.
, and
Azarm
,
S.
, 2000, “
A Multiobjective Interactive Sequential Hybrid Optimization Technique for Design Decision Making
,”
Eng. Optimiz.
0305-215X,
32
(
4
), pp.
485
500
.
16.
Kurapati
,
A.
, and
Azarm
,
S.
, 2000, “
Immune Network Simulation With Multiobjective Genetic Algorithms for Multidisciplinary Design Optimization
,”
Eng. Optimiz.
0305-215X,
33
, pp.
245
260
.
17.
Coelho
,
R. F.
,
Bersini
,
H.
, and
Bouillard
,
P.
, 2003, “
Parametrical Mechanical Design With Constraints and Preferences: Application to a Purge Valve
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
4355
4378
.
18.
Park
,
K. S.
, and
Koh
,
H. M.
, 2004, “
Preference-Based Optimum Design of an Integrated Structural Control System Using Genetic Algorithms
,”
Adv. Eng. Software
0965-9978,
35
, pp.
85
94
.
19.
Zhu
,
L.
, and
Kazmer
,
D.
, 2001, “
A Performance-Based Representation for Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
486
493
.
20.
Shih
,
C. J.
, and
Lai
,
T. K.
, 1994, “
Fuzzy Weighting Optimization With Several Objective Functions in Structural Design
,”
Comput. Struct.
0045-7949,
52
(
5
), pp.
917
924
.
21.
Paulus
,
D. M.
, Jr.
, and
Gaggioli
,
R. A.
, 2001, “
Rational Design of Vehicles: I. Multi-Objective Optimization
,”
ASME
, Advanced Energy Systems Division (Publication) AES No. 41, pp.
337
341
.
22.
Kassapoglou
,
C.
, and
Dobyns
,
A. L.
, 2001, “
Simultaneous Cost and Weight Minimization of Postbuckled Composite Panels Under Combined Compression and Shear
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
5
), pp.
372
382
.
23.
Kasprzak
,
E. M.
, and
Lewis
,
K. E.
, 2001, “
Pareto Analysis in Multiobjective Optimization Using the Colinearity Theorem and Scaling Method
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
3
), pp.
208
211
.
24.
Steven
,
G. P.
,
Li
,
Q.
, and
Xie
,
Y. M.
, 2002, “
Multicriteria Optimization that Minimizes Maximum Stress and Maximizes Stiffness
,”
Comput. Struct.
0045-7949,
80
, pp.
2433
2448
.
25.
Cvetković
,
D.
, and
Parmee
,
I. C.
, 2002, “
Preferences and Their Application in Evolutionary Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
1
), pp.
42
57
.
26.
Nakayama
,
H.
, 1997, “
Some Remarks on Trade-off Analysis in Multiobjective Programming
,” in
Multicriteria Analysis
,
J.
Climaco
, ed.,
Springer-Verlag
, Berlin, pp.
179
190
.
27.
Yakowitz
,
D. S.
, and
Lane
,
L. J.
, 1993, “
Multi-Attribute Decision Making: Dominance With Respect to an Importance Order of the Attributes
,”
Appl. Math. Comput.
0096-3003,
54
, pp.
167
181
.
28.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 1988,
Principles of Optimal Design: Modeling and Computation
,
Cambridge University Press
, New York.
29.
Noghin
,
V. D.
, 1997, “
Relative Importance of Criteria: A Quantitative Approach
,”
J. Multi-Criter. Decis. Anal.
1057-9214,
6
, pp.
355
363
.
30.
Noghin
,
V. D.
, and
Tolstykh
,
I.
, 2000, “
Using Quantitative Information on the Relative Importance of Criteria for Decision Making
,”
USSR Comput. Math. Math. Phys.
0965-5425,
40
(
11
), pp.
1529
1536
.
31.
Hunt
,
B. J.
, and
Wiecek
,
M. M.
, 2003, “
Cones to Aid Decision-Making in Multicriteria Programming
,” in
Multi-Objective Programming and Goal Programming: Theory and Applications
,
T.
Tanino
,
T.
Tanaka
, and
M.
Inuiguchi
, eds.,
Springer-Verlag
, Berlin, pp.
153
158
.
32.
Hunt
,
B. J.
, 2004, “
Multiobjective Programming with Convex Cones: Methodology and Applications
,” Ph.D. thesis, Clemson University, Clemson, SC.
33.
Pareto
,
V.
, 1896, “
Cours d’Economie Politique
,” Lausanne, Switzerland, Technical Report.
34.
Kaliszewski
,
I.
, 1994,
Qualitative Pareto Analysis by Cone Separation Technique
,
Kluwer Academic Publishers
, Dordrecht.
35.
Saaty
,
T. L.
, 1986, “
Axiomatic Foundation of the Analytic Hierarchy Process
,”
Manage. Sci.
0025-1909,
32
(
7
), pp.
841
855
.
36.
El-Gindy
,
M.
,
Woodrooffe
,
J. H.
, and
White
,
D. M.
, 1991, “
Evaluation of the Dynamic Performance of Heavy Commercial Vehicles
,” American Socieity of Mechanical Engineers, Design Engineering Division (Publication) DE, Vol. 40, Advanced Automotive Technologies, pp.
183
198
.
37.
ArcSim User Reference Manual, 1997, Automotive Research Center at the University of Michigan, Ann Arbor, MI.
38.
Sawaragi
,
Y.
,
Nakayama
,
H.
, and
Tanino
,
T.
, 1985, “
Theory of Multiobjective Optimization
,”
Mathematics in Science and Engineering
,
Academic Press, Inc.
, New York, Vol.
176
.
39.
Takeda
,
E.
, and
Nishida
,
T.
, 1980, “
Multiple Criteria Decision Problems With Fuzzy Domination Structures
,”
Fuzzy Sets Syst.
0165-0114,
3
, pp.
123
136
.
You do not currently have access to this content.