Presented are three equations that are believed to be original and new to the kinematics community. These three equations are extensions of the planar Euler–Savary relations (for envelopes) to spatial relations. All three spatial forms parallel the existing well established planar Euler–Savary equations. The genesis of this work is rooted in a system of cylindroidal coordinates specifically developed to parameterize the kinematic geometry of generalized spatial gearing and consequently a brief discussion of such coordinates is provided. Hyperboloids of osculation are introduced by considering an instantaneously equivalent gear pair. These analog equations establish a relation between the kinematic geometry of hyperboloids of osculation in mesh (viz., second-order approximation to the axode motion) to the relative curvature of conjugate surfaces in direct contact (gear teeth). Planar Euler–Savary equations are presented first along with a discussion on the terms in each equation. This presentation provides the basis for the proposed spatial Euler–Savary analog equations. A lot of effort has been directed to establishing generalized spatial Euler–Savary equations resulting in many different expressions depending on the interpretation of the planar Euler–Savary equation. This work deals with the interpretation where contacting surfaces are taken as the spatial analog to the contacting planar curves.

1.
Rosenauer
,
N.
, and
Willis
,
A. H.
, 1953,
Kinematics of Mechanisms
,
General Publishing Company, Ltd.
, Toronto, Ontario.
2.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
Amsterdam, The Netherlands
.
3.
Hunt
,
K. H.
, 1978,
The Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford, UK
.
4.
Disteli
,
M.
, 1914, “
Über des Analogon der Savaryschen Formel und Konstruktion in der kinematischen Geometrie des Raumes
,”
Zeitschrift für Mathematic und Physik
,
62
, pp.
261
309
.
5.
Tölke
,
J.
, 1976, “
Contribution to the Theory of the Axes of Curvature
,”
Mech. Mach. Theory
0094-114X,
11
, pp.
123
130
.
6.
Grill
,
J.
, 1999, “
Calculating and Optimizing of Grinding Wheels for Manufacturing Grounded Gear Hobs
,”
Proc. 4th World Congress on Gearing and Power Transmission
, Paris France, Mar. 16–18, pp.
1661
1671
.
7.
Veldkamp
,
G. R.
, 1967, “
Conical Systems and Instantaneous Invariants in Spatial Kinematics
,”
J. Mech.
0022-2569,
3
, pp.
329
388
.
8.
Dizioglu
,
B.
, 1974, “
Einfache Herleitung der Euler-Savary’schen Konstruktion der räumlichen Bewegung
,”
Mech. Mach. Theory
0094-114X,
9
, pp.
261
309
.
9.
Roth
,
B.
, 1967, “
On the Screw Axis and Other Special Lines Associated With Spatial Displacements of a Rigid Body
,”
Trans. ASME, Ser. B
0022-0817,
89
, pp.
102
110
.
10.
Esposito
,
A.
, and
Belfiore
,
N. P.
, 1999, “
A Generalization of the Euler Savary Equation
,”
MProc. of the 6th Applied Mechanism and Robotics Conference
,
Cincinnati, OH
, Dec. 12–15, No. AMR 99-064.
11.
Schulz
,
U.
, 1997, “
Ein Analogon der Euler-Savary’schen Gleichung für Bahnregelflächen und Hüllflächenpare aus Regelflächen unter Verwendung dualer Vektoren
,” Dissertation, TU Dresden, Dresden, Germany.
12.
Stachel
,
H.
, 2000, “
Instantaneous Spatial Kinematics and the Invariants of Axodes
,”
Proc., Ball 2000 Symposium
,
Cambridge UK
, July 9–11.
13.
McCarthy
,
J. M.
, and
Roth
,
B.
, 1981, “
The Curvature Theory of Line Trajectories in Spatial Kinematics
,”
ASME J. Mech. Des.
1050-0472,
103
, pp.
718
724
.
14.
Ito
,
N.
, and
Takahashi
,
K.
, 1999, “
Extension of the Euler–Savary Equation to Hypoid Gears
,”
JSME Int. J., Ser. C
1340-8062,
42
(
1
), pp.
218
224
.
15.
Griffis
,
M.
, 2003, “
A Study of Curvature for Single Point Contact
,”
Mech. Mach. Theory
0094-114X,
8
(
12
), pp.
1391
1411
.
16.
Ting
,
K.-L.
, and
Zhang
,
Y.
, 2004, “
Rigid Body Motion Characteristics and Unified Instantaneous Motion Representation of Points, Lines, and Planes
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
593
601
.
17.
Roth
,
B.
, 2005, “
Finding Geometric Invariants From Time-Based Invariants for Spherical and Spatial Motions
,”
ASME J. Mech. Des.
1050-0472,
127
(
2
), pp.
227
231
.
18.
Roth
,
B.
, 1999, “
Second Order Approximations for Ruled-Surface Trajectories
,”
Proc., 10th World Congress on the Theory of Machines and Mechanisms
,
Oulu, Finland
, June 20–24.
19.
Jüttler
,
B.
, 1997, “
An Osculating Motion With Second Order Contact for Spatial Euclidean Motions
,”
Mech. Mach. Theory
0094-114X,
32
(
7
), pp.
843
853
.
20.
Fayet
,
M.
, 2002, “
On the Reverse of One Property of Involute Gears
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
330
333
.
21.
Dooner
,
D. B.
, and
Seireg
,
A. A.
, 1995,
The Kinematic Geometry of Gearing: A Concurrent Engineering Approach
,
Wiley
,
New York
.
22.
Dooner
,
D. B.
, 2002, “
On the Three Laws of Gearing
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
733
744
.
23.
Dooner
,
D. B.
, 2003, “
On The Three Laws of Gearing
,”
Proc. Dresden Symposium on Constructive and Kinematic Geometry
, Feb. 27–Mar. 1,
Dresden, Germany
.
24.
Dooner
,
D. B.
, 2003, “
Introducing Torsure and Cylindroid of Torsure
,”
J. Rob. Syst.
0741-2223,
8
, pp.
429
436
.
25.
Hirschhorn
,
J.
, 1989, “
Path Curvatures in Three-Dimensional Constrained Motion of a Rigid Body
,”
Mech. Mach. Theory
0094-114X,
24
(
2
), pp.
73
81
.
26.
Bokelberg
,
E. H.
,
Hunt
,
K. H.
, and
Ridley
,
P. R.
, 1992, “
Spatial Motion-I: Points of Inflection and the Differential Geometry of Screws
,”
Mech. Mach. Theory
0094-114X,
27
(
1
), pp.
1
15
.
27.
Sommer
,
H. J.
, 1992, “
Determination of First and Second Order Instant Screw Parameters from Landmark Trajectories
,”
ASME J. Mech. Des.
1050-0472,
114
(
2
), pp.
274
282
.
28.
Skreiner
,
M.
, 1967, “
On the Points of Inflection in General Spatial Motion
,”
J. Mech.
0022-2569,
2
, pp.
429
433
.
You do not currently have access to this content.