New classes of compliant long dwell mechanism designs are introduced, formulated, and simulated. These classes of compliant dwell mechanisms incorporate the buckling motion of flexible members. Long dwell motion is obtained throughout the buckling motion of a flexible follower. Flexible buckling members are modeled using polynomial functions fitted to nonlinear inextensible exact elastica theory. The displacement analysis of the mechanisms is done quasi-statically using loop closure theory, static equilibrium of flexible parts represented by polynomial load deflections. One example of each new mechanism and its simulation results are presented.

1.
Burns
,
R. H.
, 1964, “
The Kinetostatic Synthesis of Flexible Link Mechanisms
,” Ph.D. dissertation, Yale University, New Haven.
2.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
, 1971, “
On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
263
267
.
3.
Sevak
,
N. M.
, and
McLarnan
,
C. W.
, 1974, “
Optimal Synthesis of Flexible Link Mechanisms With Large Static Deflections
,” ASME Paper No. 74-DET-83.
4.
Hill
,
T. C.
, 1987, “
Applications in the Analysis and Design of Compliant Mechanisms
,” M.S. thesis, Purdue University, West Lafayette.
5.
Wilson
,
J. F.
, and
Mahajan
,
U.
, 1989, “
The Mechanics and Positioning of Highly Flexible Manipulator Limbs
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
232
237
.
6.
Salomon
,
B. A.
, and
Midha
,
A.
, 1992, “
An Introduction to Mechanical Advantage in Design Automation
, 18th ASME Design Automation Conference, pp.
47
51
.
7.
Howell
,
L. L.
, 1993, “
A Generalized Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,” Ph.D. dissertation, Purdue University, West Lafayette.
8.
Ananthasuresh
,
G. K.
, 1994, “
A New Design Paradigm for Micro-Electro-Mechanical Systems and Investigations on the Compliant Mechanism Synthesis
,” Ph.D. thesis, The University of Michigan, Ann Arbor.
9.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanism Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
pp.
238
245
.
10.
Sigmund
,
O.
, 2001, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
1615-147X,
21
, pp.
120
127
.
11.
Kota
,
S.
, 2001, “
Compliant Systems Using Monolithic Mechanisms
,”
Smart Materials Bulletin
, March, pp.
7
10
.
12.
Moulton
,
T.
, and
Ananthasuresh
,
G. K.
, 2001, “
Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation
,”
Sens. Actuators, A
0924-4247,
A90
, pp.
38
48
.
13.
Saxena
,
R.
, and
Saxena
,
A.
, 2003, “
On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms
,”
Proc. of ASME International Design Engineering Technical Conference
, Chicago,
ASME
, New York, Paper No. DETC2003/DAC-48806.
14.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths
,”
ASME J. Mech. Des.
1050-0472,
126
pp.
667
672
.
15.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
975
983
.
16.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
745
752
.
17.
Nahvi
,
H.
, 1991, “
Static and Dynamic Analysis of Compliant Mechanisms Containing Highly Flexible Members
,” Ph.D. dissertation, Purdue University, West Lafayette.
18.
Lyon
,
S. M.
,
Erickson
,
P. A.
,
Evans
,
M. S.
, and
Howell
,
L. L.
, 1999, “
Prediction of the First Model Frequency of Compliant Mechanisms Using the Pseudo-Rigid Body Model
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
309
313
.
19.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
, 2003, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
0094-114X,
38
, pp.
1469
1487
.
20.
Yu
,
Y. Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M. G.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
760
765
.
21.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
, 1st ed.
Wiley
, New York.
22.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
657
666
.
23.
Tsay
,
J.
,
Su
,
L. Q.
, and
Sung
,
C. K.
, 2005, “
Design of a Linear Micro-Feeding System Featuring Bistable Mechanisms
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
63
70
.
24.
Casals-Terre
,
J.
, and
Shkel
,
A.
, 2004, “
Dynamic Analysis of a Snap-Action Micromechanism
,”
Proceedings of IEEE Conference
, pp.
1245
1248
.
25.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
Int. J. Solids Struct.
0020-7683,
13
(
2
), pp.
137
146
.
26.
Crane
,
N. B.
,
Howell
,
L. L.
,
Weight
,
B. L.
, and
Magleby
,
S. P.
, 2004, “
Compliant Floating-Opposing-Arm (FOA) Centrifugal Clutch
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
169
177
.
27.
Su
,
H. J.
, and
Mccarthy
,
J. M.
, 2006, “
A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
776
782
.
28.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y. M.
, 2006, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
542
550
.
29.
Sönmez
,
Ü.
, and
Streit
,
D. A.
, 2002, “
Compliant Long-Dwell Mechanism Synthesis Using Buckling Beam Theory
,”
CD ROM Proc. ASME 2002: International Design Engineering Technical Conferences ESDA
, Istanbul,
ASME
, New York, Paper No. DES031.
30.
Bathe
,
K.-J.
,
Finite Element Procedures in Engineering Analysis
,
Prentice-Hall
, Englewood Cliffs, NJ, 1982.
31.
Bathe
,
K.-J.
,
Ramm
,
E.
, and
Wilson
,
E. L.
, 1975, “
Finite Element Formulation for Large Deformation Dynamic Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
9
, pp.
353
386
.
32.
Yang
,
T. Y.
, and
Saigal
,
S.
, 1984, “
A Simple Element for Static and Dynamic Response of Beams With Material and Geometric Nonlinearities
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
851
867
.
33.
Riks
,
E.
, 1979, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
0020-7683,
15
, pp.
529
551
.
34.
Harrison
,
H. B.
, 1979, “
Large Deformation Analysis of Submerged Ring Frames
,”
J. Engrg. Mech. Div.
0044-7951,
105
, pp.
829
837
.
35.
Coulter
,
B. A.
, and
Miller
,
R. E.
, 1988, “
Numerical Analysis of Generalized Plane Elastica With Nonlinear Material Behavior
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
617
630
.
36.
Norton
,
R. L.
, 1999,
An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, 2nd ed.,
McGraw-Hill
, New York.
37.
Hrones
,
J. A.
, and
Nelson
,
G. L.
, 1951,
Analysis of the Four-bar Linkage
,
MIT Technology Press
, Cambridge, MA.
38.
Kota
,
S.
, 1992, “
Automatic Selection of Mechanism Design from a Three-Dimensional Design Map
,”
ASME J. Mech. Des.
1050-0472,
114
(
3
), pp.
359
367
.
39.
Kota
,
S.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
, 1988, “
MINN-DWELL-Computer Aided Design and Analysis of Linkage-Type Dwell Mechanisms
,”
Mech. Mach. Theory
0094-114X,
23
(
6
), pp.
423
433
.
40.
Badre-Alam
,
A.
, and
Streit
,
D. A.
,
, “
Long-Dwell, Finite-Dwell Linkages
,”
1994 ASME Mechanism Synthesis and Analysis Conference
, pp. 479–485.
41.
Berkof
,
M. P.
, 1996, “
Design Methodology for a Long Dwell Finite Dwell Linkage
,” Master thesis, The Pennsylvania State University.
42.
Sönmez
,
Ü.
, 2003, “
Introduction to Compliant Long-Dwell Mechanism Synthesis Using Buckling Arc Theory
,”
Proc. ASME International Design Engineering Technical Conference
, Chicago,
ASME
, New York, Vol.
2B
, pp.
999
1007
.
43.
Sönmez
,
Ü.
, 2000, “
Compliant Mechanism Design and Synthesis Using Buckling and Snap-Through Buckling of Flexible Members
,” Ph.D. thesis, The Pennsylvania State University, State College, PA.
44.
Shoup
,
T. E.
, 1969, “
An Analytical Investigation of the Large Deflections of Flexible Beam Springs
,” Ph.D. dissertation, The Ohio State University, Columbus.
45.
SMI
, Spring Manufacturers Institute, 1991,
Handbook of Spring Design
.
46.
Wang
,
C. Y.
, 1999, “
Asymptotic Formula for the Flexible Bar
,”
Mech. Mach. Theory
0094-114X,
34
, pp.
645
655
.
47.
Den Hartog
,
J. P.
, 1987,
Advanced Strength of Materials
,
Dover
, New York.
48.
Nordgren
,
R. P.
, 1966, “
On Finite Deflection of an Extensible Circular Ring Segment
,”
Int. J. Solids Struct.
0020-7683,
2
(
2
), pp.
223
233
.
You do not currently have access to this content.