This paper presents a concept and implementation of a toolbox for design and application of tripod-based parallel kinematic machines (PKMs). The toolbox is a suite of design tools to support users from conceptual design to actual application of tripod-based PKMs. These design tools have been individually developed in different languages and development environments, and are integrated seamlessly using a JAVA-based platform. Users can access all the design tools through a friendly graphical user interface (GUI). It is the first computer-aided design system specially developed for tripod-based PKMs. The toolbox includes some innovative methodologies, such as a forward kinematics solver, the concept of joint workspace, on-line monitoring based on forward kinematics, and the concept of motion purity. The paper gives an overview on the toolbox architecture and some key technologies.

1.
Corke
,
P. I.
, 1996, “
A Robotics Toolbox for MATLAB
,”
IEEE Rob. Autom. Mag.
1070-9932,
3
(
1
), pp.
24
32
.
2.
Leger
,
C.
, 2000,
Darwin2K: An Evolutionary Approach to Automated Design for Robotics
,
Kluwer
, Dordrecht.
3.
Breiji
,
A.
,
Klassens
,
B.
, and
Babuska
,
R.
, 2005, “
Automated Design Environment for Serial Industrial Manipulators
,”
Ind. Robot
0143-991X,
32
(
1
), pp.
32
34
.
4.
Speck
,
A.
, and
Klaeren
,
H.
, 1999, “
RoboSim: Java 3D Robot Visualization
,”
IECON ’99 Proc.
, San Jose, CA,
IEEE
, pp.
821
826
.
5.
Safaric
,
R.
,
Parkin
,
R. M.
,
Czarnecki
,
C. A.
, and
Calkin
,
D. W.
, 2001, “
Virtual Environment for Telerobotics
,”
Integrated Computer-Aided Engineering
,
8
(
2
), pp.
95
104
.
6.
Allen
,
A. M.
,
Santos
,
V.
, and
Valero-Cuevas
,
F.
, 2005, “
From Robotic Hands to Human Hands: a Visualization and Simulation Engine for Grasping Research
,”
Ind. Robot
0143-991X,
32
(
1
), pp.
55
63
.
7.
Suh
,
S.-H.
,
Seo
,
Y.
,
Lee
,
S.-M.
,
Choi
,
T.-H.
,
Jeong
,
G.-S.
, and
Kim
,
D.-Y.
, 2003, “
Modeling and Implementation of Internet-Based Virtual Machine
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
21
, pp.
516
522
.
8.
Bichi
,
A.
,
Caiti
,
A.
,
Pallottino
,
L.
, and
Tonietti
,
G.
, 2005, “
Online Robotic Experiments for Tele-Education at the University of Pisa
,”
J. Rob. Syst.
0741-2223,
22
(
4
), pp.
217
230
.
9.
Fernandez
,
J.
, and
Casals
,
A.
, 2004, “
Open Laboratory for Robotics Education
,”
Proc. of 2004 IEEE International Conference on Robotics and Automation
, New Orleans,
IEEE
, New York, pp.
1837
1842
.
10.
Nelson
,
A. L.
,
Doitsidis
,
L.
,
Long
,
M. T.
,
Valavanis
,
K. P.
, and
Murphy
,
R. R.
, 2004, “
Incorporation of MATLAB Into a Distributed Behavioral Robotics Architecture
,”
Proc. of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04)
, Sept. 28–Oct. 2, Sendai, Japan,
IEEE
, pp.
2028
2035
.
11.
Koren
,
Y.
, 1999, “
Will Industry Adopt PKMs?
Manuf. Eng.
0361-0853,
122
(
3
), p.
240
.
12.
Huang
,
T.
,
Zhao
,
X. Y.
, and
Whitehouse
,
D. J.
, 2002, “
Stiffness Estimation of a Tripod-Based Parallel Kinematic Machine
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
1
), pp.
50
58
.
13.
Liu
,
Xin-Jun
, and
Wang
,
Jinsong
, 2006, “
Determination of the Link Lengths for a Spatial 3-DOF Parallel Manipulator
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
365
373
.
14.
Rao
,
N. M.
, and
Rao
,
K. M.
, 2006, “
Multi-Position Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
815
819
.
15.
Li
,
Y.
, and
Xu
,
Q.
, 2006, “
Kinematic Analysis and Design of a New 3-DOF Translational Parallel Manipulator
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
729
734
.
16.
Toyama
,
K. T.
, 1998, “
Machine tool having parallel structure
,” U.S. Patent No. 5715729.
17.
Tonshoff
,
H. K.
,
Grendel
,
H.
, and
Kaak
,
R.
, 1999, “
Structure and Characteristics of the Hybrid Manipulator Georg V
,”
Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements
,
Springer-Verlag
, Berlin, Advanced Manufacturing Series, pp.
365
376
.
18.
Wang
,
L.
,
Wong
,
B.
,
Shen
,
W.
, and
Lang
,
S. Y. T.
, 2001, “
A Web-Based Collaborative Workspace Using Java 3D
,”
Proc. of CSCW2001
, London, ON, Canada, July 12–14,
IEEE
, pp.
77
82
.
19.
Zhang
,
D.
,
Wang
,
L.
,
Lang
,
S. Y. T.
, 2005, “
Parallel Kinematic Machines: Design, Analysis and Simulation in an Integrated Virtual Environment
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
580
588
.
20.
Bianchi
,
G.
,
Fassi
,
I.
, and
Tosatti
,
L. M.
, 2000, “
A Virtual Prototyping Environment for Parallel Kinematic Machine Analysis and Design
,” 15th European ADAMS Users’ Conference.
21.
Falco
,
J. A.
, 1997, “
Simulation Tools for Collaborative Exploration of Hexapod Machine Capabilities and Applications
,”
Proc. of the 1997 InternationalSimulation Conference and Technology Showcase
, Auburn Hills, MI, Sept. 29–Oct. 3,
National Institute of Standards and Technology
, Reference No. 436.
22.
DiGregorio
,
R.
, 2006, “
Analytic Form Solution of the Direct Position Analysis of a Wide Family of Three-Legged Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
264
271
.
23.
Gosselin
,
C. M.
,
Sefrioui
,
J.
, and
Richard
,
M. J.
, 1994, “
On the Direct Kinematics of Spherical Three-Degree-of-Freedom Parallel Manipulators of General Architecture
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
594
598
.
24.
Gosselin
,
C. M.
, and
St-Pirre
,
E.
, 1997, “
Development and Experimentation of a Fast 3-DOF Camera-Orienting Device
,”
Int. J. Robot. Res.
0278-3649,
16
(
5
), pp.
619
630
.
25.
Lang
,
S. Y. T.
,
Orban
,
P.
,
Bi
,
Z. M.
,
Verner
,
M.
, and
Zhang
,
D.
, 2005, “
Development of Tripod-Based PKMs
,” 5th International Workshop on Advanced Manufacturing Technologies, May 16–18, London, Ontario, Canada.
26.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
You do not currently have access to this content.