A unified approach to topology and dimensional synthesis of compliant mechanisms is presented in this paper as a discrete optimization problem employing both discrete (topology) and continuous (size) variables. The synthesis scheme features a design parameterization method that treats load paths as discrete design variables to represent various topologies, thereby ensuring structural connectivity among the input, output, and ground supports. The load path synthesis approach overcomes certain design issues, such as “gray areas” and disconnected structures, inherent in previous design schemes. Additionally, multiple gradations of structural resolution and a variety of configurations can be generated without increasing the number of design variables. By treating topology synthesis as a discrete optimization problem, the synthesis approach is incorporated in a genetic algorithm to search for feasible topologies for single-input single-output compliant mechanisms. Two design examples, commonly seen in the compliant mechanisms literature, are included to illustrate the synthesis procedure and to benchmark the performance. The results show that the load path synthesis approach can effectively generate well-connected compliant mechanism designs that are free of gray areas.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
John Wiley and Sons, Inc.
,
New York
.
2.
Kota
,
S.
,
Ananthasuresh
,
G. K.
,
Crary
,
S. B.
, and
Wise
,
K. D.
, 1994, “
Design and Fabrication of Microelectromechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
116
(
4
), pp.
1081
1088
.
3.
Saggere
,
L.
, and
Kota
,
S.
, 1999, “
Static Shape Control of Smart Structures Using Compliant Mechanisms
,”
AIAA J.
0001-1452,
37
(
5
), pp.
572
578
.
4.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
K.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
1994 International Mechanical Engineering Congress and Exposition
,
ASME
,
Chicago, IL
,
55
, pp.
677
686
.
5.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
(
3
), pp.
535
559
.
6.
Sigmund
,
O.
, 2001, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
2
), pp.
120
127
.
7.
Frecker
,
M.
,
Kikuchi
,
K.
, and
Kota
,
S.
, 1999, “
Topology Optimization of Compliant Mechanisms With Multiple Outputs
,”
Struct. Optim.
0934-4373,
17
(
4
), pp.
269
278
.
8.
Hetrick
,
J.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
229
234
.
9.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
28
(
4
), pp.
245
280
.
10.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
2
), pp.
238
245
.
11.
Bendsoe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape, and Material
,
Springer
,
Berlin
.
12.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
49
62
.
13.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometry and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
197
224
.
14.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
1005
1012
.
15.
Ohsaki
,
M.
, 1995, “
Genetic Algorithm for Topology Optimization of Trusses
,”
Comput. Struct.
0045-7949,
57
(
2
), pp.
219
225
.
16.
Rajeev
,
S.
, and
Kirishnamoorthy
,
C. S.
, 1997, “
Genetic Algorithms-based Methodologies for Design Optimization of Trusses
,”
J. Struct. Eng.
0733-9445,
123
(
3
), pp.
350
358
.
17.
Shim
,
P. Y.
, and
Manoochehri
,
S.
, 1997, “
Generating Optimal Configurations in Structural Design Using Simulated Annealing
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
1053
1069
.
18.
Jakiela
,
M. J.
,
Chapman
,
C.
,
Duda
,
J.
,
Adenike
,
A.
, and
Kazuhiro
,
S.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
(
2
), pp.
339
356
.
19.
Lu
,
K. J.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
6
), pp.
379
391
.
20.
Parsons
,
R.
, and
Canfield
,
S. L.
, 2002, “
Developing Genetic Programming Techniques for the Design of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
78
86
.
21.
Hamda
,
H.
,
Jouve
,
F.
,
Lutton
,
E.
,
Schoenauer
,
M.
, and
Sebag
,
M.
, 2002, “
Compact Unstructured Representations for Evolutionary Design
,”
Applied Intelligence
,
16
(
2
), pp.
139
155
.
22.
Tai
,
K.
, and
Chee
,
T. H.
, 2000, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
560
566
.
23.
Akhtar
,
S.
,
Tai
,
K.
, and
Prasad
,
J.
, 2002, “
Topology Optimization of Compliant Mechanisms Using Evolutionary Algorithm With Design Geometry Encoded as a Graph
,”
ASME 2002 Design Engineering Technical Conferences
,
ASME
,
Montreal, Canada
, DETC2002/DAC-34147.
24.
Cui
,
G. Y.
,
Tai
,
K.
, and
Wang
,
B. P.
, 2002, “
Topology Optimization for Maximum Natural Frequency Using Simulated Annealing and Morphological Representation
,”
AIAA J.
0001-1452,
40
(
3
), pp.
586
589
.
25.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
0161-8458,
124
(
3
), pp.
492
500
.
26.
Canfield
,
S. L.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
, pp.
269
270
.
27.
Jung
,
D.
, and
Gea
,
H. C.
, 2004, “
Topology Optimization of Nonlinear Structures
,”
Finite Elem. Anal. Design
0168-874X,
40
(
11
), pp.
1417
1427
.
28.
Gea
,
H. C.
, and
Luo
,
J.
, 2001, “
Topology Optimization of Structures With Geometrical Nonlinearities
,”
Comput. Struct.
0045-7949,
79
(20–21), pp.
1977
1985
.
29.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2705
.
30.
Shield
,
R. T.
, and
Prager
,
W.
, 1970, “
Optimal Structural Design for Given Deflection
,”
ZAMP
0044-2275,
21
, pp.
513
523
.
31.
Hetrick
,
J. A.
, 1999, “
An Energy Efficiency Approach for Unified Topological and Dimensional Synthesis of Compliant Mechanisms
,” Ph.D. dissertation, Department of Mechanical Engineering, University of Michigan, Ann Arbor.
32.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
The University of Michigan Press
,
Ann Arbor, MI
.
33.
Goldberg
,
D.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Boston, MA
.
34.
Lu
,
K.-J.
, 2004, “
Synthesis of Shape Morphing Compliant Mechanisms
,” Ph.D. dissertation, Mechanical Engineering, University of Michigan, Ann Arbor, MI.
35.
Jones
,
D. R.
,
Perttunen
,
C. D.
, and
Stuckman
,
B. E.
, 1993, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
0022-3239,
79
(
1
), pp.
157
181
.
36.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 2001, “
Large Deformation Behavior of Compliant Mechanisms
,”
ASME 2001 Design Engineering Technical Conference
,
Pittsburg, PA
, DETC2001/DAC-21084.
37.
Kota
,
S.
,
Rodgers
,
M. S.
, and
Hetrick
,
J. A.
, 2001,
Compliant displacement-multiplying apparatus for microelectromechanical systems
, United States Patent 6,175,170.
38.
Hetrick
,
J.
, and
Kota
,
S.
, 2003,
Displacement amplification structure and device
, United States Patent 6,557,436.
39.
Hetrick
,
J.
, and
Kota
,
S.
, 2000, “
Topology and Geometric Synthesis of Compliant Mechanisms
,”
2000 ASME Design Engineering Technical Conference
,
ASME
,
Baltimore, MD
, DETC2000/MECH-14140.
40.
Mei
,
Y.
, and
Wang
,
X.
, 2004, “
A Level Set Method for Structural Topology Optimization and its Applications
,”
Adv. Eng. Software
0965-9978,
35
(
7
), pp.
415
441
.
41.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Strength Considerations
,”
Mech. Struct. Mach.
0890-5452,
29
(
2
), pp.
199
221
.
42.
Saxena
,
R.
, and
Saxena
,
A.
, 2003, “
On Honeycomb Parametrization for Topology Optimization of Compliant Mechanisms
,”
ASME 2003 Design Engineering Technical Conferences
, Chicago, IL, DETC2003/DAC-48806.
43.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
745
752
.
44.
Lu
,
K. J.
, and
Kota
,
S.
, 2005, “
An Effective Method of Synthesizing Compliant Adaptive Structure using Load Path Representation
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
307
317
.
You do not currently have access to this content.