Abstract

This paper formulates the inverse static analysis of planar compliant mechanisms in polynomial form. The goal is to find the equilibrium configurations of the system in response to a known force/moment applied to the mechanism. The geometric constraint of the linkage defines a set of kinematics equations which are combined with equilibrium equations obtained from partial derivatives of the potential-energy function. In order to apply polynomial homotopy solver to these equations, we approximate the linear torsion spring torque at each joint by using sine and cosine functions. The results obtained from the homotopy solver are then refined using Newton-Raphson iteration. To demonstrate the analysis steps, we study two example planar compliant mechanisms, a four-bar linkage with two torsional springs, and a parallel platform supported by three linear springs. Numerical examples are provided together with plots of the potential energy during a movement between selected equilibrium positions.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
2.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
118
(
1
), pp.
121
125
.
3.
Pigoski
,
T. M.
, and
Duffy
,
J.
, 1995, “
An Inverse Force Analysis of a Planar Two-Spring System
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
548
553
.
4.
Sun
,
L.
,
Liang
,
C. G.
, and
Liao
,
Q. Z.
, 1997, “
An Inverse Static Force Analysis of a Special Planar Three-Spring System
,”
Mech. Mach. Theory
0094-114X,
32
(
5
), pp.
609
615
.
5.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
, 1999, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
(
3
), pp.
416
423
.
6.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2003, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
701
708
.
7.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2005, “
A Three Degree-of-Freedom Model for Self-Retracting Fully Compliant Bistable Micromechanisms
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
739
744
.
8.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland Publishing Company
,
Amsterdam
.
9.
Tsai
,
L.-W.
, 1999,
Robot Analysis
,
Wiley-Interscience
,
New York
.
10.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
11.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
, 2001,
Mechanism Design: Analysis and Synthesis
, 4th ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
Su
,
H. J.
,
Watson
,
L. T.
, and
McCarthy
,
J. M.
, 2004, “
Generalized Linear Product Homotopy Algorithms and the Computation of Reachable Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
4
(
3
), pp.
226
234
.
13.
Wise
,
S. M.
,
Sommese
,
A. J.
, and
Watson
,
L. T.
, 2000, “
Algorithm 801: POLSYS̱PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations
,”
ACM Trans. Math. Softw.
0098-3500,
26
(
1
), pp.
176
200
.
14.
Su
,
H.-J.
,
McCarthy
,
J. M.
,
Sosonkina
,
M.
, and
Watson
,
L. T.
, 2006, “
Algorithm 8xx: A Parallel General Linear Product Homotopy COde for Solving Polynomial Systems of Equations
,” to appear in
ACM Trans. Math. Softw.
0098-3500,
32
(
3
).
15.
Verschelde
,
J.
, 1999, “
Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
0098-3500,
25
(
2
), pp.
251
276
.
You do not currently have access to this content.