In this paper, we present a differential-geometric approach to analyze the singularities of task space point trajectories of two and three-degree-of-freedom serial and parallel manipulators. At non-singular configurations, the first-order, local properties are characterized by metric coefficients, and, geometrically, by the shape and size of a velocity ellipse or an ellipsoid. At singular configurations, the determinant of the matrix of metric coefficients is zero and the velocity ellipsoid degenerates to an ellipse, a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes zero. The degeneracies of the velocity ellipsoid or ellipse gives a simple geometric picture of the possible task space velocities at a singular configuration. To study the second-order properties at a singularity, we use the derivatives of the metric coefficients and the rate of change of area or volume. The derivatives are shown to be related to the possible task space accelerations at a singular configuration. In the case of parallel manipulators, singularities may lead to either loss or gain of one or more degrees-of-freedom. For loss of one or more degrees-of-freedom, the possible velocities and accelerations are again obtained from a modified metric and derivatives of the metric coefficients. In the case of a gain of one or more degrees-of-freedom, the possible task space velocities can be pictured as growth to lines, ellipses, and ellipsoids. The theoretical results are illustrated with the help of a general spatial 2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.

1.
Wang
,
S. L.
, and
Waldron
,
K. J.
,
1987
, “
A Study of the Singular Configurations of Serial Manipulators
,”
ASME J. Mech., Transm., Autom. Des.
,
109
, pp.
14
20
.
2.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Castelli
,
V. P.
, and
Innocenti
,
C.
,
1990
, “
Singularities, Configurations and Displacement Functions for Manipulators
,”
Int. J. Robot. Res.
,
5
, pp.
52
65
.
3.
Hunt
,
K. H.
,
1986
, “
Special Configurations of Robot Arms via Screw Theory, Part 1. The Jacobian and its Matrix Cofactors
,”
Robotica
,
4
, pp.
171
179
.
4.
Martinez, J. M. R., Alvarado, J. G., and Duffy, J. A., 1994, “A Determination of Singular Configurations of Serial Non-Redundant Manipulators and Their Escapement From Singularities Using Lie Products,” in Proc. of the Conference on Computational Kinematics.
5.
Lipkin
,
H.
, and
Pohl
,
E.
,
1991
, “
Enumeration of Singular Configurations for Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
, pp.
272
279
.
6.
Karger
,
A.
,
1995
, “
Classification of Robot-Manipulators With Only Singularity Configurations
,”
Mech. Mach. Theory
,
30
, pp.
727
736
.
7.
Karger
,
A.
,
1996
, “
Classification of Robot-Manipulators With Nonremovable Singularities
,”
ASME J. Mech. Des.
,
118
, pp.
202
208
.
8.
Sugimoto
,
K.
,
Duffy
,
J.
, and
Hunt
,
K. H.
,
1982
, “
Special Configurations of Spatial Mechanisms and Robot Arms
,”
Mech. Mach. Theory
,
1982
, pp.
119
132
.
9.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
, pp.
281
290
.
10.
Litvin
,
F. L.
,
Fanghella
,
P.
,
Tan
,
J.
, and
Zhang
,
Y.
,
1986
, “
Singularities in Motion and Displacement Functions of Spatial Linkages
,”
ASME J. Mech. Trans. Auto. Des.
,
108
, pp.
516
523
.
11.
Merlet
,
J. P.
,
1991
, “
Singularity Configurations of Parallel Manipulators and Grassman Geometry
,”
Int. J. Robot. Res.
,
10
, pp.
123
134
.
12.
Stanisic
,
M. M.
, and
Duta
,
O.
,
1990
, “
Symmetrically Actuated Double Pointing Systems–the Basis of Singularity Free Wrists
,”
IEEE Trans. Rob. Autom.
,
6
, pp.
562
569
.
13.
Tchnon
,
K.
, and
Matuszok
,
A.
,
1995
, “
On Avoiding Singularity in Redundant Robot Kinematics
,”
Robotica
,
13
, pp.
599
606
.
14.
Shamir
,
T.
,
1990
, “
The Singularities of Redundant Robot Arms
,”
Int. J. Robot. Res.
,
9
, pp.
113
121
.
15.
Karger
,
A.
,
1996
, “
Singularity Analysis of Serial-Robot Manipulators
,”
ASME J. Mech. Des.
,
118
, pp.
520
525
.
16.
Chevallereau
,
C.
,
1998
, “
Feasible Trajectories in Task Space From a Singularity for a Non-Redundant or Redundant Robot Manipulator
,”
Int. J. Robot. Res.
,
17
, pp.
56
69
.
17.
Lloyd, J. E., 1996, “Using Puiseux Series to Control Non-Redundant Robots at Singularities,” in Proc. of IEEE Conf. on Robotics and Automation, pp. 1877–1882.
18.
Nenchev, D. N., Tsumaki, Y., Uchiyama, M., Senft, V., and Hirzinger, G., 1996, Two Approaches to Singularity Consistent Motion of Non-Redundant Robotic Mechanisms, in Proc. of IEEE Conf. on Robotics and Automation, pp. 1883–1890.
19.
Nenchev, D. N., and Uchiyama, M., 1996, “Singularity Consistent Path Planning and Control of Parallel Robot Motion Through Instantaneous-Self-Motion Type Singularities,” in Proc. of IEEE Conf. on Robotics and Automation, pp. 1864–1870.
20.
Sardis, R., Ravani, B., and Bodduluri, R. M. C., 1992, “A Kinematic Design Criterion for Singularity Avoidance in Redundant Manipulators,” in Proc. of 3rd ARK Conference, pp. 257–261.
21.
Golubitsky, M., and Guillemin, V., 1973, Stable Mappings and Their Singularities, Springer-Verlag.
22.
Kieffer
,
J.
,
1992
, “
Manipulator Inverse Kinematics for Untimed End-Effector Trajectories With Singularities
,”
Int. J. Robot. Res.
,
11
, pp.
225
237
.
23.
Kieffer
,
J.
,
1994
, “
Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms
,”
IEEE Trans. Rob. Autom.
,
10
, pp.
1
10
.
24.
Tchnon
,
K.
, and
Muszynski
,
R.
,
1997
, “
Singularities of Non-Redundant Robot Kinematics
,”
Int. J. Robot. Res.
,
16
, pp.
60
76
.
25.
Ghosal
,
A.
, and
Roth
,
B.
,
1987
, “
Instantaneous Properties of Multi-Degrees-of-Freedom Motions—Point Trajectories
,”
ASME J. Mech., Transm., Autom. Des.
,
109
, pp.
107
115
.
26.
Millman, R. S., and Parker, G. D., 1977, Elements of Differential Geometry, Prentice-Hall, NJ.
27.
Strubecker, K., 1969, Differentialgeometrie, Vol II, Theorie der Fla¨chenmetrik, Walter de Gruyter, Berlin.
28.
Yoshikawa, T., 1985, “Manipulability of Robotic Mechanisms,” in Robotics Research: The Second International Symposium, pp. 206–214.
29.
Nakamura, Y., 1991, Advanced Robotics: Redundancy and Optimization. Addison-Wesley, Reading, MA.
30.
Golub, G. H., and Loan, C. F. V., 1989, Matrix Computations, Johns Hopkins.
31.
Karger
,
A.
,
1989
, “
Curvature Properties of 6-Parametric Robot Manipulators
,”
Manuscr. Math.
,
65
, pp.
311
328
.
32.
Bedrossain, N. S., 1990, “Classification of Singular Configuration for Redundant Manipulators,” in Proc. of IEEE Conf. on Robotics and Automation, pp. 818–823.
33.
Lee
,
K. M.
, and
Shah
,
D.
,
1988
, “
Kinematic Analysis of a Three-Degrees-of-Freedom in-Parallel Actuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
4
, pp.
354
360
.
You do not currently have access to this content.