In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effect of variations (or uncertainties). However, the evaluation of feasibility robustness is often a computationally intensive process. Simplified approaches in existing robust design applications may lead to either over-conservative or infeasible design solutions. In this paper, several feasibility-modeling techniques for robust optimization are examined. These methods are classified into two categories: methods that require probability and statistical analyses and methods that do not. Using illustrative examples, the effectiveness of each method is compared in terms of its efficiency and accuracy. Constructive recommendations are made to employ different techniques under different circumstances. Under the framework of probabilistic optimization, we propose to use a most probable point (MPP) based importance sampling method, a method rooted in the field of reliability analysis, for evaluating the feasibility robustness. The advantages of this approach are discussed. Though our discussions are centered on robust design, the principles presented are also applicable for general probabilistic optimization problems. The practical significance of this work also lies in the development of efficient feasibility evaluation methods that can support quality engineering practice, such as the Six Sigma approach that is being widely used in American industry. [S1050-0472(00)00904-1]

1.
Taguchi, G., 1993, Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream, ASME, New York.
2.
Phadke, M. S., 1989, Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, New Jersey.
3.
Otto
,
K. N.
, and
Antonsson
,
E. K.
,
1991
, “
Extensions to the Taguchi Method of Product Design
,”
ASME J. Mech. Des.
,
115
, No.
1
, pp.
5
13
.
4.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
, pp.
74
80
.
5.
Sundaresan, S., Ishii, K., and Houser, D. R., 1993, “A Robust Optimization Procedure with Variations on Design Variables and Constraints,” Advances in Design Automation, ASME DE-Vol. 69-1, pp. 379–386.
6.
Cagan, J., and Williams, B. C., 1993, “First-Order Necessary Conditions for Robust Optimality,” Advances in Design Automation, ASME DE-Vol. 65-1, pp. 539–549.
7.
Eggert
,
R. J.
, and
Mayne
,
R. W.
,
1993
, “
Probabilistic Optimal Design Using Successive Surrogate Probability Density Functions
,”
ASME J. Mech. Des.
,
115
, pp.
385
391
.
8.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design
,”
ASME J. Mech. Des.
,
118
, No.
4
, pp.
478
485
.
9.
Su
,
J.
, and
Renaud
,
J. E.
,
1997
, “
Automatic Differentiation in Robust Optimization
,”
AIAA J.
,
35
, No.
6
, p.
1072
1072
.
10.
Bras
,
B. A.
, and
Mistree
,
F.
,
1995
, “
A Compromise Decision Support Problem for Robust and Axiomatic Design
,”
ASME J. Mech. Des.
,
117
, No.
1
, pp.
10
19
.
11.
Iyer, H. V., and Krishnamurty, S., 1998, “A Preference-Based Robust Design Metric,” 1998 ASME Design Technical Conference, Paper No. DAC5625, Atlanta, GA.
12.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
,
1999
, “
Quality Utility: A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
,
121
, No.
2
, pp.
179
187
.
13.
Eggert, R. J., 1991, “Quantifying Design Feasibility Using Probabilistic Feasibility Analysis,” 1991 ASME Advances in Design Automation, Paper No. DE-Vol. 32-1, pp. 235–240.
14.
Yu
,
J-C.
, and
Ishii
,
K.
,
1998
, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
ASME J. Mech. Des.
,
120
, pp.
196
202
.
15.
Koch, P. N., Mavris, D., Allen, J. K., and Mistree, F., 1998, “Modeling Noise in Approximation-Based robust Design: A Comparison and Critical Discussion,” 1998 ASME Design Engineering Technical Conferences, Paper No. DETC98/DAC-5588, Atlanta, Georgia.
16.
Law, A. M., and Kelton, W. D., 1982, Simulation Modeling ands Analysis, McGraw-Hill Company, New York.
17.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
100
, pp.
111
121
.
18.
Maglaras
,
G.
,
Ponslet
,
E.
,
Haftka
,
R. T.
,
Nikolaidis
,
E.
,
Sensharma
,
P.
, and
Cudney
,
H. H.
,
1996
, “
Analytical and Experimental Comparison of Probabilistic and Deterministic Optimization
,”
AIAA J.
,
34
, pp.
1512
1518
.
19.
Melchers, R. E., 1999, Structural Reliability Analysis and Prediction, Wiley, Chichester, England.
20.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
, pp.
470
472
.
21.
Wu
,
Y.-T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
,
1990
, “
An Advance Probabilistic Analysis Method for Implicit Performance Function
,”
AIAA J.
,
28
, pp.
1663
1669
.
22.
Mitteau
,
J.-C.
,
1999
, “
Error Evaluations for the Computation of Failure Probability in Static Structural Reliability Problems
,”
Probab. Eng. Mech.
,
14
, No.
1/2
, pp.
119
135
.
23.
Breitung
,
K.
,
1984
, “
Asymptotic Approximation for Multinormal Integrals
,”
ASCE J. Eng. Mech.
,
110
, pp.
357
366
.
24.
Tvedt
,
L.
,
1990
, “
Distribution of Quadratic Forms in Normal Space—Application to Structural Reliability
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
116
, No.
6
, pp.
1183
1197
.
25.
Tichy, M., 1993, Applied Methods of Structural Reliability, Kluwer Academic, Norwell.
26.
Ang, A. H.-S., and Tang, W. H., 1984, Probabilistic Concepts in Engineering Planning and Decision, Vol. II, Wiley, New York.
27.
Wu, Y.-T., 1998, “Methods for Efficient Probabilistic Analysis of System with Large Numbers of Random Variables,” 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis Optimization, St. Louis, a collection of technical papers.
28.
Ang
,
G.
,
Ang
,
L.
,
H-S.
,
A.
, and
Tang
,
W. H.
,
1992
, “
Optimal Importance-Sampling Density Function
,”
J. Eng. Mech.
118
, No.
6
, pp.
1146
1163
.
29.
Varadarajan
,
S.
,
Chen
,
W.
, and
Pelka
,
C.
,
2000
, “
The Robust Concept Exploration Method with Enhanced Model Approximation Capabilities
,”
J. Eng. Optim.
,
32
, No.
3
, pp.
309
334
.
30.
Chen
,
L. Z.
, and
Weng
,
H. S.
,
1998
, “
New Method for Probabilistic Optimization Design
,”
Chin. J. Mech. Eng.
,
34
, pp.
6
12
.
You do not currently have access to this content.