Abstract

Cold metal transfer (CMT) has emerged as a highly promising method for directly producing or repairing high-performance metal components. Induced fabrication defects, like porosity and heterogeneous microstructures, impact part quality and mechanical performance. Investigating a high-efficiency CMT-based wire-arc direct energy deposition method is important for manufacturing high-quality, super duplex stainless steel 2507 (SDSS2507)–Inconel 718 (IN718) parts. Ultrasonic vibration has been used to enhance part performance in melting material solidification procedures. Few studies exist on using ultrasonic vibration in CMT-based wire-arc direct energy deposition for dissimilar SDSS2507–IN718 part production. This research proposes the use of ultrasonic vibration (UV)-assisted CMT-based wire-arc direct energy deposition to manufacture dissimilar SDSS2507–IN718 parts to potentially decrease fabrication faults. Experimental studies are carried out to examine the impact of ultrasonic vibration on the microstructures and mechanical properties of parts manufactured using CMT. The findings demonstrated that the application of ultrasonic vibration improved the microstructure, leading to an average grain size of 4.59 µm. Additionally, it effectively fragmented the harmful Laves precipitated phase into small particles that were evenly distributed. Consequently, the yield strength and ultimate tensile strength (UTS) of the fabricated dissimilar SDSS2507–IN718 parts were improved. The microhardness increases from an average of 302 HV to 335 HV, reflecting an 11% gain, at SDSS2507; from 233 HV to 265 HV at the Interface, indicating a 14% increase; and from 249 HV to 270 HV at IN718, demonstrating a 9% enhancement.

References

1.
Marefat
,
F.
,
Kapil
,
A.
,
Banaee
,
S. A.
,
Van Rymenant
,
P.
, and
Sharma
,
A.
,
2023
, “
Evaluating Shielding Gas-Filler Wire Interaction in Bi-Metallic Wire Arc Additive Manufacturing (WAAM) of Creep Resistant Steel-Stainless Steel for Improved Process Stability and Build Quality
,”
J. Manuf. Processes
,
88
, pp.
110
124
.
2.
Soysal
,
T.
,
Kou
,
S.
,
Tat
,
D.
, and
Pasang
,
T.
,
2016
, “
Macrosegregation in Dissimilar-Metal Fusion Welding
,”
Acta Mater.
,
110
, pp.
149
160
.
3.
Ahsan
,
M. R. U.
,
Tanvir
,
A. N. M.
,
Seo
,
G. J.
,
Bates
,
B.
,
Hawkins
,
W.
,
Lee
,
C.
,
Liaw
,
P. K.
,
Noakes
,
M.
,
Nycz
,
A.
, and
Kim
,
D. B.
,
2020
, “
Heat-Treatment Effects on a Bimetallic Additively-Manufactured Structure (BAMS) of the Low-Carbon Steel and Austenitic-Stainless Steel
,”
Addit. Manuf.
,
32
, p.
101036
.
4.
Ahsan
,
M. R. U.
,
Fan
,
X.
,
Seo
,
G. J.
,
Ji
,
C.
,
Noakes
,
M.
,
Nycz
,
A.
,
Liaw
,
P. K.
, and
Kim
,
D. B.
,
2021
, “
Microstructures and Mechanical Behavior of the Bimetallic Additively-Manufactured Structure (BAMS) of Austenitic Stainless Steel and Inconel 625
,”
J. Mater. Sci. Technol.
,
74
, pp.
176
188
.
5.
Kim
,
Y. S.
,
Yun
,
D.
,
Han
,
J. H.
,
Ahsan
,
M. R. U.
,
Huang
,
E.-W.
,
Jain
,
J.
,
Ji
,
C.
,
Kim
,
D. B.
, and
Lee
,
S. Y.
,
2022
, “
Bimetallic Additively Manufactured Structure (BAMS) of Inconel 625 and Austenitic Stainless Steel: Effect of Heat-Treatment on Microstructure and Mechanical Properties
,”
Int. J. Adv. Manuf. Technol.
,
121
(
11–12
), pp.
7539
7549
.
6.
Ning
,
F.
,
Jiang
,
D.
,
Liu
,
Z.
,
Wang
,
H.
, and
Cong
,
W.
,
2021
, “
Ultrasonic Frequency Effects on the Melt Pool Formation, Porosity, and Thermal-Dependent Property of Inconel 718 Fabricated by Ultrasonic Vibration-Assisted Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051009
.
7.
Ning
,
F.
,
Hu
,
Y.
,
Liu
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Cong
,
W.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p. 061012.
8.
Prathivraj
,
S.
, and
Oyyaravelu
,
R.
,
2024
, “
Effect of Interpass Temperature on Austenite Ferrite Ratio of Wire Arc Additive Manufactured 2507 Super Duplex Stainless Steel
,”
Mater. Lett.
,
361
, p.
136125
.
9.
Dinovitzer
,
M.
,
Chen
,
X.
,
Laliberte
,
J.
,
Huang
,
X.
, and
Frei
,
H.
,
2019
, “
Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure
,”
Addit. Manuf.
,
26
, pp.
138
146
.
10.
Prasad
,
R.
,
Yuvaraj
,
N.
,
Vipin
, and
Gopal
,
A.
,
2024
, “
Experimental Investigation of Process Parameters of Cold Metal Transfer Welding-Based Wire Arc Additive Manufacturing of Aluminum 4047 Alloy Using Response Surface Methodology
,”
Weld. World
,
68
(
11
), pp.
2837
2852
.
11.
Prasad
,
R.
,
Yuvaraj
,
N.
, and
Vipin
,
2025
, “
Wear Characteristics of Dissimilar SDSS 2507–IN 718 Parts Fabricated by Cold Metal Transfer-Based Wire Arc Additive Manufacturing
,”
ASME J. Tribol.
,
147
(
10
), p.
104203
.
12.
Meena
,
R. P.
,
N
,
Y.
, and
Vipin
,
2024
, “
A Review on Wire Arc Additive Manufacturing Based on Cold Metal Transfer
,”
Mater. Manuf. Processes
,
39
(10), pp.
1
27
.
13.
Prasad
,
R.
,
Yuvaraj
,
N.
, and
Bajpai
,
T.
,
2025
, “
Experimental Investigation of Process Parameters of Cold Metal Transfer Welding in Vertical Direction Deposition of Stainless-Steel Using Response Surface Methodology
,”
Eng. Res. Exp.
,
7
(
1
), p.
015506
.
14.
Ezatpour
,
H. R.
,
Sajjadi
,
S. A.
,
Sabzevar
,
M. H.
, and
Huang
,
Y.
,
2014
, “
Investigation of Microstructure and Mechanical Properties of Al6061-Nanocomposite Fabricated by Stir Casting
,”
Mater. Des.
,
55
, pp.
921
928
.
15.
Sun
,
Q. J.
,
Lin
,
S. B.
,
Yang
,
C. L.
, and
Zhao
,
G. Q.
,
2009
, “
Penetration Increase of AISI 304 Using Ultrasonic Assisted Tungsten Inert Gas Welding
,”
Sci. Technol. Weld. Joining
,
14
(
8
), pp.
765
767
.
16.
Kore
,
S. D.
,
Date
,
P. P.
,
Kulkarni
,
S. V.
,
Kumar
,
S.
,
Rani
,
D.
,
Kulkarni
,
M. R.
,
Desai
,
S. V.
,
Rajawat
,
R. K.
,
Nagesh
,
K. V.
, and
Chakravarty
,
D. P.
,
2011
, “
Application of Electromagnetic Impact Technique for Welding Copper-to-Stainless Steel Sheets
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9–12
), pp.
949
955
.
17.
Patarić
,
A.
,
Mihailović
,
M.
, and
Gulišija
,
Z.
,
2012
, “
Quantitative Metallographic Assessment of the Electromagnetic Casting Influence on the Microstructure of 7075 Al Alloy
,”
J. Mater. Sci.
,
47
(
2
), pp.
793
796
.
18.
Cao
,
G.
,
Konishi
,
H.
, and
Li
,
X.
,
2008
, “
Mechanical Properties and Microstructure of Mg∕SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031105
.
19.
Abramov
,
O. V.
,
1987
, “
Action of High Intensity Ultrasound on Solidifying Metal
,”
Ultrasonics
,
25
(
2
), pp.
73
82
.
20.
Komarov
,
S. V.
,
Kuwabara
,
M.
, and
Abramov
,
O. V.
,
2005
, “
High Power Ultrasonics in Pyrometallurgy: Current Status and Recent Development
,”
ISIJ Int.
,
45
(
12
), pp.
1765
1782
.
21.
Todaro
,
C. J.
,
Easton
,
M. A.
,
Qiu
,
D.
,
Zhang
,
D.
,
Bermingham
,
M. J.
,
Lui
,
E. W.
,
Brandt
,
M.
,
StJohn
,
D. H.
, and
Qian
,
M.
,
2020
, “
Grain Structure Control During Metal 3D Printing by High-Intensity Ultrasound
,”
Nat. Commun.
,
11
(
1
), p.
142
.
22.
Ma
,
Q.
,
Chen
,
H.
,
Ren
,
N.
,
Zhang
,
Y.
,
Hu
,
L.
,
Meng
,
W.
, and
Yin
,
X.
,
2021
, “
Effects of Ultrasonic Vibration on Microstructure, Mechanical Properties, and Fracture Mode of Inconel 625 Parts Fabricated by Cold Metal Transfer Arc Additive Manufacturing
,”
J. Mater. Eng. Perform.
,
30
(
9
), pp.
6808
6820
.
23.
Jeong
,
T. W.
,
Cho
,
Y. T.
,
Lee
,
C. M.
, and
Kim
,
D. H.
,
2024
, “
Effects of Ultrasonic Treatment on Mechanical Properties and Microstructure of Stainless Steel 308L and Inconel 718 Functionally Graded Materials Fabricated via Double-Wire Arc Additive Manufacturing
,”
Mater. Sci. Eng. A
,
896
, p.
146298
.
24.
Meena
,
R. P.
,
Yuvaraj
,
N.
, and
Vipin
,
V.
,
2024
, “
Investigations and Optimization of Cold Metal Transfer-Based WAAM Process Parameters for Fabrication of Inconel 718 Samples Using Response Surface Methodology
,”
Arabian J. Sci. Eng.
,
49
(
11
), pp.
15177
15191
.
25.
Meena
,
R. P.
,
Yuvaraj
,
N.
, and
Vipin
,
2024
, “
Optimization of Process Parameters of Cold Metal Transfer Welding-Based Wire Arc Additive Manufacturing of Super Duplex Stainless Steel Using Response Surface Methodology
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
, pp.
1
12
.
26.
Wang
,
F.
,
Eskin
,
D.
,
Mi
,
J.
,
Connolley
,
T.
,
Lindsay
,
J.
, and
Mounib
,
M.
,
2016
, “
A Refining Mechanism of Primary Al3Ti Intermetallic Particles by Ultrasonic Treatment in the Liquid State
,”
Acta Mater.
,
116
, pp.
354
363
.
27.
Ruirun
,
C.
,
Deshuang
,
Z.
,
Tengfei
,
M.
,
Hongsheng
,
D.
,
Yanqing
,
S.
,
Jingjie
,
G.
, and
Hengzhi
,
F.
,
2017
, “
Effects of Ultrasonic Vibration on the Microstructure and Mechanical Properties of High Alloying TiAl
,”
Sci. Rep.
,
7
(
1
), p.
41463
.
28.
Gäumann
,
M.
,
Bezençon
,
C.
,
Canalis
,
P.
, and
Kurz
,
W.
,
2001
, “
Single-Crystal Laser Deposition of Superalloys: Processing—Microstructure Maps
,”
Acta Mater.
,
49
(
6
), pp.
1051
1062
.
29.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
.
30.
Liu
,
F.
,
Lin
,
X.
,
Leng
,
H.
,
Cao
,
J.
,
Liu
,
Q.
,
Huang
,
C.
, and
Huang
,
W.
,
2013
, “
Microstructural Changes in a Laser Solid Forming Inconel 718 Superalloy Thin Wall in the Deposition Direction
,”
Opt. Laser Technol.
,
45
(
1
), pp.
330
335
.
31.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X.
,
Chen
,
X.
, and
Zeng
,
X.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloys Compd.
,
513
, pp.
518
523
.
32.
Haldar
,
N.
,
Anand
,
S.
,
Datta
,
S.
, and
Das
,
A.
,
2024
, “
On Fabrication of Inconel 718 Slab by Wire Arc Additive Manufacturing: Study of Built Microstructure and Mechanical Properties
,”
Arabian J. Sci. Eng.
,
49
(
2
), pp.
2045
2063
.
33.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc. London, Sect. B
,
64
(
9
), pp.
747
753
.
You do not currently have access to this content.