Abstract

Experimental and numerical investigations on the formability of longitudinally butt-welded tailor-welded blank of the same thickness prepared by friction stir welding are presented in this article. The friction stir-welding technique involves a solid-state stirring mechanism to butt weld the two blanks of aluminum alloy AA5083 and AA6082 both in the annealed state. To study the effect of welded region on formability, experiments are performed on tailor-welded blanks with and without the annealing operation. The tensile properties of the parent sheets, welded blanks, and welded region are determined by performing standard uniaxial tension tests. The elastic properties, true stress–true strain, and anisotropic data sets are used in the material model for the prediction of failure strains to develop forming limit plots. The predicted results from finite element analysis are validated with the experimental results obtained from the limiting dome height test. The annealing is observed to enhance the formability of the friction stir tailor-welded blank (FSTWB) by almost 13% in plane strain and equibiaxial stretch conditions.

References

1.
Gautam
,
V.
,
Raut
,
V. M.
, and
Kumar
,
D. R.
,
2018
, “
Analytical Prediction of Springback in Bending of Tailor-Welded Blanks Incorporating Effect of Anisotropy and Weld Zone Properties
,”
Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
,
232
(
4
), pp.
294
306
.
2.
Wallentowitz
,
H.
,
Leyers
,
J.
, and
Parr
,
T.
,
2003
, “Materials for Future Automotive Body Structures,”
Business Briefing: Global Automotive Manufacturing & Technology
, pp.
1
4
.
3.
Habibi
,
M.
,
Hashemi
,
R.
,
Fallah Tafti
,
F.
, and
Assempour
,
A.
,
2018
, “
Experimental Investigation of Mechanical Properties, Formability and Forming Limit Diagrams for Tailor-Welded Blanks Produced by Friction Stir Welding
,”
J. Manuf. Processes
,
31
, pp.
310
323
.
4.
Kesharwani
,
R.
,
Panda
,
S.
, and
Pal
,
S.
,
2015
, “
Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process
,”
J. Mater. Eng. Perform.
,
24
(
2
), pp.
1038
1049
.
5.
Sadoun
,
A.
,
Meselhy
,
A.
, and
Deabs
,
A.
,
2020
, “
Improved Strength and Ductility of Friction Stir Tailor-Welded Blanks of Base Metal AA2024 Reinforced With Interlayer Strip of AA7075
,”
Results in Physics
,
16
, p.
102911
.
6.
Avula
,
D.
,
Singh
,
R. K. R.
,
Dwivedi
,
D. K.
, and
Mehta
,
N.
,
2011
, “
Effect of Friction Stir Welding on Microstructural and Mechanical Properties of Copper Alloy
,”
World Acad. Sci., Eng. Technol.
,
74
, pp.
214
222
.
7.
El-Danaf
,
E. A.
, and
El-Rayes
,
M. M.
,
2013
, “
Microstructure and Mechanical Properties of Friction Stir Welded 6082 AA in as Welded and Post Weld Heat Treated Conditions
,”
Mater. Des. (1980–2015)
,
46
, pp.
561
572
.
8.
Mishra
,
R. S.
, and
Ma
,
Z.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng.: R: Rep.
,
50
(
1–2
), pp.
1
78
.
9.
Silva
,
M.
,
Skjoedt
,
M.
,
Vilaça
,
P.
,
Bay
,
N.
, and
Martins
,
P.
,
2009
, “
Single Point Incremental Forming of Tailored Blanks Produced by Friction Stir Welding
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
811
820
.
10.
Kim
,
D.
,
Lee
,
W.
,
Kim
,
J.
,
Chung
,
K.-H.
,
Kim
,
C.
,
Okamoto
,
K.
,
Wagoner
,
R.
, and
Chung
,
K.
,
2010
, “
Macro-Performance Evaluation of Friction Stir Welded Automotive Tailor-Welded Blank Sheets: Part II–Formability
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
1063
1081
.
11.
Nguyen
,
N. T.
,
Hariharan
,
K.
,
Chakraborti
,
N.
,
Barlat
,
F.
, and
Lee
,
M. G.
,
2015
, “
Springback Reduction in Tailor Welded Blank With High Strength Differential by Using Multi Objective Evolutionary and Genetic Algorithms
,”
Steel Res. Int.
,
86
(
11
), pp.
1391
1402
.
12.
Hariharan
,
K.
,
Nguyen
,
N. T.
,
Chakraborti
,
N.
,
Lee
,
M. G.
, and
Barlat
,
F.
,
2014
, “
Multi Objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels
,”
Steel Res. Int.
,
85
(
12
), pp.
1597
1607
.
13.
Hovanski
,
Y.
,
Upadhyay
,
P.
,
Carsley
,
J.
,
Luzanski
,
T.
,
Carlson
,
B.
,
Eisenmenger
,
M.
,
Soulami
,
A.
,
Marshall
,
D.
,
Landino
,
B.
, and
Hartfield-Wunsch
,
S.
,
2015
, “
High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks
,”
JOM
,
67
(
5
), pp.
1045
1053
.
14.
Parente
,
M.
,
Safdarian
,
R.
,
Santos
,
A. D.
,
Loureiro
,
A.
,
Vilaca
,
P.
, and
Jorge
,
R. N.
,
2016
, “
A Study on the Formability of Aluminum Tailor Welded Blanks Produced by Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
2129
2141
.
15.
Khan
,
N. Z.
,
Siddiquee
,
A. N.
,
Khan
,
Z. A.
, and
Mukhopadhyay
,
A. K.
,
2017
, “
Mechanical and Microstructural Behavior of Friction Stir Welded Similar and Dissimilar Sheets of AA2219 and AA7475 Aluminium Alloys
,”
J. Alloys Compd.
,
695
, pp.
2902
2908
.
16.
Bhukya
,
S.
,
Wu
,
Z.
, and
Elmustafa
,
A.
,
2022
, “Effect of Post Weld Heat Treatment on Donor Material Assisted Friction Stir Welding of AA6061-T6 Alloy on Microstructure and Mechanical Properties,”
Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus. FAIM 2022. Lecture Notes in Mechanical Engineering
,
K. Y.
Kim
,
L.
Monplaisir
, and
J.
Rickli
, eds.,
Springer
, Cham, pp.
80
91
.
17.
Feyissa
,
F.
,
Ravi Kumar
,
D.
, and
Rao
,
P. N.
,
2018
, “
Characterization of Microstructure, Mechanical Properties and Formability of Cryorolled AA5083 Alloy Sheets
,”
J. Mater. Eng. Perform.
,
27
(
4
), pp.
1614
1627
.
18.
Liu
,
J.
,
Tan
,
M.-J.
, and
Castagne
,
S.
,
2010
, “
Formability in AA5083 and AA6061 Alloys for Light Weight Applications
,”
Mater. Des.
,
31
, pp.
S66
S70
.
19.
Priyadarshini
,
A.
,
Sancheti
,
C. I.
, and
Dwarka
,
S. S.
,
2015
, “
Comparative Study of Forgeability of as Extrude AA6082 and as Cast AA6082 Alloy
,”
ISME J. Manuf. Sci.
,
6
(
1
), pp.
1
8
.
20.
Lee
,
Y. B.
,
Shin
,
D. H.
,
Park
,
K. T.
, and
Nam
,
W. J.
,
2004
, “
Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature
,”
Scr. Mater.
,
51
(
4
), pp.
355
359
.
21.
Changela
,
K.
,
Krishnaswamy
,
H.
, and
Digavalli
,
R. K.
,
2020
, “
Mechanical Behavior and Deformation Kinetics of Aluminum Alloys Processed Through Cryorolling and Subsequent Annealing
,”
Metall. Mater. Trans. A
,
51
(
2
), pp.
648
666
.
22.
Kumar
,
S.
,
Kumar
,
S.
, and
Kumar
,
A.
,
2013
, “
Optimization of Process Parameters for Friction Stir Welding of Joining A6061 and A6082 Alloys by Taguchi Method
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
227
(
6
), pp.
1150
1163
.
23.
Singh
,
N.
,
Belokar
,
R. M.
, and
Walia
,
R. S.
,
2022
, “
Fabrication and Mechanical Characterization of Al7075-T6/SiC/Gr/S-Glass Fiber Particulate Reinforced Hybrid Metal Matrix Composite Using Vacuum Sealed Stir Casting Technique
,”
Trans. Indian Inst. Met.
,
75
(
7
), pp.
1741
1750
.
24.
Kumar
,
A.
,
Kumar
,
D. R.
, and
Gautam
,
V.
,
2019
, “
Prediction of Residual Stresses in Biaxial Stretching of Tailor Welded Blanks by Finite Element Analysis
,”
IOP Conference Series: Materials Science and Engineering. Volume 651, 38th International Deep Drawing Research Group Annual Conference (IDDRG 2019)
,
Enschede, Netherlands
,
June 3–7
,
IOP Publishing
.
25.
Ling
,
J.
, and
Lee
,
S.
,
2015
, “
Characterization of a Portable X-Ray Device for Residual Stress Measurements
,”
JCPDS International Centre for Diffraction Data
, pp.
153
162
.
26.
Hibbit, Karlsson, and Sorensen
,
2007
,
ABAQUS/Standard Analysis User's Manual
,
Hibbit, Karlsson, Sorensen Inc
,
Pawtucket, RI
.
You do not currently have access to this content.