Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Viscoelastic composite reinforced with natural fibers is proposed here for the damping treatment of structures for vibration attenuation. The constrained layer damping (CLD) method is found a prominent structural vibration damping method and as a result of the inclusion of natural fiber, substantial damping could be achieved due to the development of shear as well as extensional strains in the viscoelastic material. Finite element analysis of a substrate beam combined with CLD treatment is used to investigate the corresponding improvement in damping. The influence of various geometry of presently considered natural viscoelastic composite layers on the CLD treatment's damping performance has been evaluated and discussed. Damping performances of natural as well as synthetic fibers have been assessed and compared for using natural fibers in viscoelastic composite for various structural applications. The addition of natural fiber has resulted from enhanced damping capacity due to substantial friction at the natural fiber–matrix interface compared to the case of interface with synthetic fiber. Natural fiber attributes less stiffness and a higher loss factor as compared to synthetic fiber and the insertion of stiff fibers affects the polymer chain's movements, decreasing the matrix phase's damping behavior. The dynamic mechanical analysis test is performed to evaluate the damping characteristics in the form of loss factor, storage, and loss modulus over the temperature range from frozen state to melting state.

References

1.
Rao
,
M. D.
,
2003
, “
Recent Applications of Viscoelastic Damping for Noise Control in Automobiles and Commercial Airplanes
,”
J. Sound Vib.
,
262
(
3
), pp.
457
474
.
2.
Biggerstaff
,
J. M.
, and
Kosmatka
,
J. B.
,
1999
, “Shear Measurements of Viscoelastic Damping Materials Embedded in Composite Plates,”
Smart Structures and Materials 1999: Passive Damping and Isolation
, SPIE, Vol. 3672, pp.
82
92
.
3.
Bai
,
J.-B.
,
Chen
,
D.
,
Xiong
,
J.-J.
, and
Shenoi
,
R. A.
,
2019
, “
Folding Analysis for Thin-Walled Deployable Composite Boom
,”
Acta Astronaut.
,
159
, pp.
622
636
.
4.
El-Sabbagh
,
A.
, and
Baz
,
A.
,
2014
, “
Topology Optimization of Unconstrained Damping Treatments for Plates
,”
Eng. Optim.
,
46
(
9
), pp.
1153
1168
.
5.
Bert
,
C. W.
,
1973
, “
Material Damping
,”
J. Sound Vib.
,
29
(
2
), pp.
129
153
.
6.
Jones
,
D. I. G.
,
1990
, “
On Temperature-Frequency Analysis of Polymer Dynamic Mechanical Behaviour
,”
J. Sound Vib.
,
140
(
1
), pp.
85
102
.
7.
Robbins
,
D. H.
, and
Reddy
,
J. N.
,
1991
, “
Analysis of Piezoelectrically Actuated Beams Using a Layer-Wise Displacement Theory
,”
Comput. Struct.
,
41
(
2
), pp.
265
279
.
8.
Sahoo
,
S. R.
, and
Ray
,
M. C.
,
2019
, “
Active Control of Laminated Composite Plates Using Elliptical Smart Constrained Layer Damping Treatment
,”
Compos. Struct.
,
211
, pp.
376
389
.
9.
Li
,
H.
,
Lv
,
H.
,
Gu
,
J.
,
Xiong
,
J.
,
Han
,
Q.
,
Liu
,
J.
, and
Qin
,
Z.
,
2021
, “
Nonlinear Vibration Characteristics of Fibre Reinforced Composite Cylindrical Shells in Thermal Environment
,”
Mech. Syst. Signal Process.
,
156
, pp.
107665
.
10.
Roy
,
P. K.
, and
Ganesan
,
N.
,
1996
, “
Dynamic Studies on Beams With Unconstrained Layer Damping Treatment
,”
J. Sound Vib.
,
195
(
3
), pp.
417
427
.
11.
Ungar
,
E. E.
, and
Kerwin
,
E. M.
,
1964
, “
Plate Damping Due to Thickness Deformations in Attached Viscoelastic Layers
,”
J. Acoust. Soc. Am.
,
36
(
2
), pp.
386
392
.
12.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
,
2007
, “
Homogenised Finite Element for Transient Dynamic Analysis of Unconstrained Layer Damping Beams Involving Fractional Derivative Models
,”
Comput. Mech.
,
40
(
2
), pp.
313
324
.
13.
Brun
,
M.
,
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
,
2021
, “
Transient Dynamic Analysis of Unconstrained Layer Damping Beams Characterized by a Fractional Derivative Model
,”
Mathematics
,
9
(
15
), p.
1731
.
14.
Zhu
,
R.
,
Zhang
,
X.
,
Zhang
,
S.
,
Dai
,
Q.
,
Qin
,
Z.
, and
Chu
,
F.
,
2022
, “
Modeling and Topology Optimization of Cylindrical Shells With Partial CLD Treatment
,”
Int. J. Mech. Sci.
,
220
, p.
107145
.
15.
Fasana
,
A.
,
Garibaldi
,
L.
,
Giorcelli
,
E.
, and
Ruzzene
,
M.
,
1997
, “Passive Damping of Beams With Constrained Viscoelastic Material,”
Smart Structures and Materials 1997: Passive Damping and Isolation
, SPIE, Vol. 3045, pp.
184
189
.
16.
Koh
,
B.
,
Rustighi
,
E.
,
Waters
,
T.
, and
Mace
,
B.
,
2016
, “
Vibration Control of Beams and Plates With Hybrid Active-Passive Constrained Layer Damping Treatments
.”
17.
Zheng
,
H.
,
Pau
,
G. S. H.
, and
Liu
,
G. R.
,
2003
, “Optimization of Passive Constrained Layer Damping Treatments for Vibration Control of Cylindrical Shells.”
18.
Mishra
,
V. N.
, and
Sarangi
,
S. K.
,
2023
, “
A Numerical Model for the Effective Damping Properties of Unidirectional Fiber-Reinforced Composites
,”
Mech. Compos. Mater.
,
59
(
5
), pp.
1031
1044
.
19.
Zhou
,
X. Q.
,
Yu
,
D. Y.
,
Shao
,
X. Y.
,
Zhang
,
S. Q.
, and
Wang
,
S.
,
2016
, “
Asymptotic Analysis on Flexural Dynamic Characteristics for a Laminated Composite Plate With Embedded and Perforated Periodically Viscoelastic Damping Material Core
,”
Compos. Struct.
,
154
, pp.
616
633
.
20.
Zhang
,
S.-Q.
,
Zhao
,
G.-Z.
,
Rao
,
M. N.
,
Schmidt
,
R.
, and
Yu
,
Y.-J.
,
2019
, “
A Review on Modeling Techniques of Piezoelectric Integrated Plates and Shells
,”
J. Intell. Mater. Syst. Struct.
,
30
(
8
), pp.
1133
1147
.
21.
Presas
,
A.
,
Luo
,
Y.
,
Wang
,
Z.
,
Valentin
,
D.
, and
Egusquiza
,
M.
,
2018
, “
A Review of PZT Patches Applications in Submerged Systems
,”
Sensors
,
18
, p.
2251
.
22.
Akl
,
W. N.
, and
Baz
,
A.
,
2007
, “
Finite Element Modeling of Smart Foam for Active Vibration and Noise Control Applications
,”
Mech. Adv. Mater. Struct.
,
14
(
6
), pp.
477
498
.
23.
Azvine
,
B.
,
Tomlinson
,
G. R.
, and
Wynne
,
R. J.
,
1995
, “
Use of Active Constrained-Layer Damping for Controlling Resonant Vibration
,”
Smart Mater. Struct.
,
4
(
1
), pp.
1
6
.
24.
Baz
,
A. M.
, and
Ro
,
J.-J.
,
1994
, “Performance Characteristics of Active Constrained-Layer Damping.” C. D. Johnson, ed., pp.
98
114
.
25.
Han
,
Y.
,
Sheng
,
M.
, and
Fu
,
X.
,
2021
, “
Investigation of Controllable Modes in Active Vibration Cancellation Induced by Piezoelectric Patches
,”
Appl. Sci.
,
11
(
12
), p.
5542
.
26.
Kumar
,
R. S.
, and
Ray
,
M. C.
,
2016
, “
Smart Damping of Geometrically Nonlinear Vibrations of Functionally Graded Sandwich Plates Using 1–3 Piezoelectric Composites
,”
Mech. Adv. Mater. Struct.
,
23
(
6
), pp.
652
669
.
27.
Zhu
,
R.
,
Zhang
,
L.
,
Han
,
Q.
,
Qin
,
Z.
, and
Chu
,
F.
,
2023
, “
Constrained Layer Damping for Mitigating Vibration of a Rotating Disk-Drum Coupled Structure
,”
Mech. Syst. Signal Process.
,
200
, pp.
110531
.
28.
Li
,
H.
,
Wang
,
Z.
,
Lv
,
H.
,
Zhou
,
Z.
,
Han
,
Q.
,
Liu
,
J.
, and
Qin
,
Z.
,
2020
, “
Nonlinear Vibration Analysis of Fiber Reinforced Composite Cylindrical Shells With Partial Constrained Layer Damping Treatment
,”
Thin-Walled Struct.
,
157
, p.
107000
.
29.
Kumar
,
A.
, and
Panda
,
S.
,
2016
, “
Design of a 1–3 Viscoelastic Composite Layer for Improved Free/Constrained Layer Passive Damping Treatment of Structural Vibration
,”
Compos. B: Eng.
,
96
, pp.
204
214
.
30.
Gupta
,
A.
, and
Panda
,
S.
,
2021
, “
Hybrid Damping Treatment of a Layered Beam Using a Particle-Filled Viscoelastic Composite Layer
,”
Compos. Struct.
,
262
, p.
113623
.
31.
Hu
,
H.
,
Belouettar
,
S.
,
Potier-Ferry
,
M.
, and
Daya
,
E. M.
,
2008
, “
Review and Assessment of Various Theories for Modeling Sandwich Composites
,”
Compos. Struct.
,
84
(
3
), pp.
282
292
.
32.
De Borbón
,
F.
,
Ambrosini
,
D.
, and
Curadelli
,
O.
,
2014
, “
Damping Response of Composites Beams With Carbon Nanotubes
,”
Compos. B: Eng.
,
60
, pp.
106
110
.
33.
Kumar
,
A.
,
Panda
,
S.
,
Narsaria
,
V.
, and
Kumar
,
A.
,
2018
, “
Augmented Constrained Layer Damping in Plates Through the Optimal Design of a 0–3 Viscoelastic Composite Layer
,”
J. Vib. Control
,
24
(
23
), pp.
5514
5524
.
34.
Jawaid
,
M.
,
Abdul Khalil
,
H. P. S.
,
Hassan
,
A.
,
Dungani
,
R.
, and
Hadiyane
,
A.
,
2013
, “
Effect of Jute Fibre Loading on Tensile and Dynamic Mechanical Properties of Oil Palm Epoxy Composites
,”
Compos. B: Eng.
,
45
(
1
), pp.
619
624
.
35.
Alhijazi
,
M.
,
Safaei
,
B.
,
Zeeshan
,
Q.
,
Asmael
,
M.
,
Eyvazian
,
A.
, and
Qin
,
Z.
,
2020
, “
Recent Developments in Luffa Natural Fiber Composites
,”
Sustainability
,
12
(
18
), p.
7683
.
36.
Mohamad
,
A.
,
Qasim
,
Z.
,
Zhaoye
,
Q.
,
Babak
,
S.
, and
Mohammed
,
A.
,
2020
, “
Finite Element Analysis of Natural Fibers Composites: A Review
,”
Nanotechnol. Rev.
,
9
(
1
), p.
853e75
.
37.
Lall
,
A. K.
,
Asnani
,
N. T.
, and
Nakra
,
B. C.
,
1988
, “
Damping Analysis of Partially Covered Sandwich Beams
,”
J. Sound Vib.
,
123
(
2
), pp.
247
259
.
38.
Assarar
,
M.
,
Zouari
,
W.
,
Ayad
,
R.
,
Kebir
,
H.
, and
Berthelot
,
J.-M.
,
2018
, “
Improving the Damping Properties of Carbon Fibre Reinforced Composites by Interleaving Flax and Viscoelastic Layers
,”
Compos. B: Eng.
,
152
, pp.
248
255
.
39.
Margem
,
F. M.
,
Monteiro
,
S. N.
,
Neto
,
J. B.
,
Rodriguez
,
R. J. S.
, and
Soares
,
B.
,
2009
, “
The Dynamic-Mechanical Behavior of Epoxy Matrix Composites Reinforced With Ramie Fibers
,”
Matéria (Rio de Janeiro)
,
15
(
2
), pp.
164
171
.
40.
Duc
,
F.
,
Bourban
,
P.-E.
, and
Månson
,
J.-A. E.
,
2014
, “
Dynamic Mechanical Properties of Epoxy/Flax Fibre Composites
,”
J. Reinf. Plast. Compos.
,
33
(
17
), pp.
1625
1633
.
41.
Tang
,
X.
, and
Yan
,
X.
,
2017
, “
Acoustic Energy Absorption Properties of Fibrous Materials: A Review
,”
Compos. Part A: Appl. Sci. Manuf.
,
101
, pp.
360
380
.
42.
Mishra
,
V. N.
, and
Sarangi
,
S. K.
,
2023
, “
Augmented Active Constrained Layer Damping of Beams Using Graphite Reinforced Viscoelastic Composite Material
,”
Mech. Adv. Mater. Struct.
, pp.
1
14
.
43.
Xie
,
Z.
, and
Shepard
,
W. S.
,
2009
, “
An Enhanced Beam Model for Constrained Layer Damping and a Parameter Study of Damping Contribution
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1271
1284
.
44.
Rouway
,
M.
,
Nachtane
,
M.
,
Tarfaoui
,
M.
,
Chakhchaoui
,
N.
,
Omari
,
L. H.
,
Fraija
,
F.
, and
Cherkaoui
,
O.
,
2020
, “
Prediction of Mechanical Performance of Natural Fibers Polypropylene Composites: A Comparison Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
948
(
1
), p.
012031
.
45.
Shukla
,
M. J.
,
Kumar
,
D. S.
,
Mahato
,
K. K.
,
Rathore
,
D. K.
,
Prusty
,
R. K.
, and
Ray
,
B. C.
,
2015
, “
A Comparative Study of the Mechanical Performance of Glass and Glass/Carbon Hybrid Polymer Composites at Different Temperature Environments
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
75
, p.
012002
.
You do not currently have access to this content.