Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The progression of manufacturing technology has significantly benefited from the adoption of 3D printing techniques, which enable the production of parts with intricate geometries. However, it is important to acknowledge that components fabricated through this additive manufacturing method frequently manifest defects and are prone to failure under severe conditions. Therefore, a thorough examination of the mechanical properties of these parts is essential to effectively reduce the failure. This study aimed to explore the mechanical properties of two prevalently used 3D-printed polymers, specifically Onyx and acrylonitrile butadiene styrene (ABS), by integrating computational and experimental analyses. The experimental study utilized a material testing system and digital image correlation (DIC) technology, while the computational analysis covered the finite element (FE) modeling of the 3D-printed samples. The research focused on evaluating the tensile strength and fatigue resistance of the specimens printed in various orientations, alongside a detailed investigation of their fracture behavior. The crack propagation analysis was carried out using the DIC system and the separating morphing and adaptive re-meshing technology (SMART) scheme in ansys. It was observed that upright build orientation produced the weakest samples for axial loading and specimens with notches failed earlier than those without. Moreover, Onyx was found to have a higher resistance to fracture or failure compared to ABS. The FE modeling results demonstrated strong agreement with the experimental results, validating their accuracy and reliability in characterizing the critical mechanical response of 3D-printed parts rapidly and cost effectively.

References

1.
Bragaglia
,
M.
,
Cecchini
,
F.
,
Paleari
,
L.
,
Ferrara
,
M.
,
Rinaldi
,
M.
, and
Nanni
,
F.
,
2023
, “
Modeling the Fracture Behavior of 3D-Printed PLA as a Laminate Composite: Influence of Printing Parameters on Failure and Mechanical Properties
,”
Compos. Struct.
,
322
, p.
117379
.
2.
Khosravani
,
M. R.
,
Rezaei
,
S.
,
Ruan
,
H.
, and
Reinicke
,
T.
,
2022
, “
Fracture Behavior of Anisotropic 3D-Printed Parts: Experiments and Numerical Simulations
,”
J. Mater. Res. Technol.
,
19
, pp.
1260
1270
.
3.
Li
,
J.
,
Yang
,
S.
,
Li
,
D.
, and
Chalivendra
,
V.
,
2018
, “
Numerical and Experimental Studies of Additively Manufactured Polymers for Enhanced Fracture Properties
,”
Eng. Fract. Mech.
,
204
, pp.
557
569
.
4.
Parandoush
,
P.
, and
Lin
,
D.
,
2017
, “
A Review on Additive Manufacturing of Polymer-Fiber Composites
,”
Compos. Struct.
,
182
, pp.
36
53
.
5.
Türk
,
D. A.
,
Brenni
,
F.
,
Zogg
,
M.
, and
Meboldt
,
M.
,
2017
, “
Mechanical Characterization of 3D Printed Polymers for Fiber Reinforced Polymers Processing
,”
Mater. Des.
,
118
, pp.
256
265
.
6.
Yadav
,
D.
, and
Jaya
,
B. N.
,
2024
, “
Mechanical Properties and Fracture Resistance of 3D-Printed Polylactic Acid
,”
ASME J. Eng. Mater. Technol.
,
146
(
1
), p.
011009
.
7.
Yu
,
T.
,
Zhang
,
Z.
,
Song
,
S.
,
Bai
,
Y.
, and
Wu
,
D.
,
2019
, “
Tensile and Flexural Behaviors of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites
,”
Compos. Struct.
,
225
, p.
111147
.
8.
Nawafleh
,
N.
, and
Celik
,
E.
,
2020
, “
Additive Manufacturing of Short Fiber Reinforced Thermoset Composites With Unprecedented Mechanical Performance
,”
Addit. Manuf.
,
33
, p.
101109
.
9.
Wang
,
F.
,
Zhang
,
Z.
,
Ning
,
F.
,
Wang
,
G.
, and
Dong
,
C.
,
2020
, “
A Mechanistic Model for Tensile Property of Continuous Carbon Fiber Reinforced Plastic Composites Built by Fused Filament Fabrication
,”
Addit. Manuf.
,
32
, p.
101102
.
10.
Ziemian
,
C. W.
, and
Ziemian
,
R. D.
,
2020
, “
Residual Strength of Additive Manufactured ABS Parts Subjected to Fatigue Loading
,”
Int. J. Fatigue
,
134
, p.
105455
.
11.
Jap
,
N. S. F.
,
Pearce
,
G. M.
,
Hellier
,
A. K.
,
Russell
,
N.
,
Parr
,
W. C.
, and
Walsh
,
W. R.
,
2019
, “
The Effect of Raster Orientation on the Static and Fatigue Properties of Filament Deposited ABS Polymer
,”
Int. J. Fatigue
,
124
, pp.
328
337
.
12.
Ghandriz
,
R.
,
Hart
,
K.
, and
Li
,
J.
,
2020
, “
Extended Finite Element Method (XFEM) Modeling of Fracture in Additively Manufactured Polymers
,”
Addit. Manuf.
,
31
, p.
100945
.
13.
Ameri
,
B.
,
Taheri-Behrooz
,
F.
, and
Aliha
,
M. R. M.
,
2021
, “
Evaluation of the Geometrical Discontinuity Effect on Mixed-Mode I/II Fracture Load of FDM 3D-Printed Parts
,”
Theor. Appl. Fract. Mech.
,
113
(
4
), p.
102953
.
14.
Stewart
,
C. M.
, and
Garcia
,
E.
,
2019
, “
Fatigue Crack Growth of a Hot Mix Asphalt Using Digital Image Correlation
,”
Int. J. Fatigue
,
120
, pp.
254
266
.
15.
Aliheidari
,
N.
,
Christ
,
J.
,
Tripuraneni
,
R.
,
Nadimpalli
,
S.
, and
Ameli
,
A.
,
2018
, “
Interlayer Adhesion and Fracture Resistance of Polymers Printed Through Melt Extrusion Additive Manufacturing Process
,”
Mater. Des.
,
156
, pp.
351
361
.
16.
Striemann
,
P.
,
Gerdes
,
L.
,
Huelsbusch
,
D.
,
Niedermeier
,
M.
, and
Walther
,
F.
,
2021
, “
Interlayer Bonding Capability of Additively Manufactured Polymer Structures Under High Strain Rate Tensile and Shear Loading
,”
Polymers (Basel)
,
13
(
8
), p.
1301
.
17.
Yavas
,
D.
,
Zhang
,
Z.
,
Liu
,
Q.
, and
Wu
,
D.
,
2021
, “
Interlaminar Shear Behavior of Continuous and Short Carbon Fiber Reinforced Polymer Composites Fabricated by Additive Manufacturing
,”
Compos. B: Eng.
,
204
(
7
), p.
108460
.
18.
Khatri
,
A.
, and
Adnan
,
A.
,
2016
, “
Effect of Raster Orientation on Fracture Toughness Properties of 3D Printed Abs Materials and Structures
,”
Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
,
Phoenix, AZ
,
Nov. 11–17
,
ASME
, p.
V009T12A064
.
19.
Cicero
,
S.
, and
Arrieta
,
S.
,
2023
, “
Fracture Load Predictions in 3D Printed Graphene-Reinforced PLA Notched Specimens Using the Average Strain Energy Density Criterion
,”
Proceedings of the Pressure Vessels and Piping Conference
,
Atlanta, GA
,
July 16–21
,
ASME
, p.
V005T06A031
.
20.
Heitkamp
,
T.
,
Hilbig
,
K.
,
Kuschmitz
,
S.
,
Girnth
,
S.
,
Waldt
,
N.
,
Klawitter
,
G.
, and
Vietor
,
T.
,
2024
, “
Design Principles and Restrictions for Continuous Fiber-Reinforced Additive Manufacturing
,”
ASME J. Mech. Des.
,
146
(
6
), p.
062002
.
21.
Pinho
,
S. T.
,
Robinson
,
P.
, and
Iannucci
,
L.
,
2006
, “
Fracture Toughness of the Tensile and Compressive Fibre Failure Modes in Laminated Composites
,”
Compos. Sci. Technol.
,
66
(
13
), pp.
2069
2079
.
22.
Taoufik
,
H.
,
Fatima
,
M.
, and
Hassan
,
R.
,
2023
, “
Modeling of the Fracture Behavior of the 3D Printed Polymers Using XFEM
,”
Procedia Struct. Integrity
,
47
, pp.
711
722
.
23.
Alshoaibi
,
A. M.
, and
Ali Fageehi
,
Y.
,
2022
, “
3D Modelling of Fatigue Crack Growth and Life Predictions Using ANSYS
,”
Ain Shams Eng. J.
,
13
(
4
), p.
101636
.
24.
Alshoaibi
,
A. M.
,
2023
, “
Fatigue Crack Growth Analysis in Modified Compact Tension Specimen With Varying Stress Ratios: A Finite Element Study
,”
Appl. Sci.
,
13
(
24
), p.
13160
.
25.
Matvienko
,
Y. G.
,
Razumovskii
,
I. A.
, and
Fedorov
,
A. A.
,
2021
, “
Numerical Modeling the Effect of Static Indentation on the Rate and the Fatigue Crack Growth Trajectory
,”
J. Phys.: Conf. Ser.
,
1945
(
1
), p.
012039
.
26.
Gupta
,
A.
,
Sun
,
W.
, and
Bennett
,
C. J.
,
2020
, “
Simulation of Fatigue Small Crack Growth in Additive Manufactured Ti–6Al–4 V Material
,”
Contin. Mech. Thermodyn.
,
32
(
6
), pp.
1745
1761
.
27.
Hunnell
,
J. M.
, and
Kujawski
,
D.
,
2009
, “
Numerical Simulation of Fatigue Crack Growth Behavior by Crack-Tip Blunting
,”
Eng. Fract. Mech.
,
76
(
13
), pp.
2056
2064
.
30.
“Designation: E8/E8M − 13a Standard Test Methods for Tension Testing of Metallic Materials 1,” https://www.galvanizeit.com/uploads/ASTM-E-8-yr-13.pdf
31.
Khairul
,
M.
,
Pulok
,
H.
,
Rahman
,
S.
, and
Chakravarty
,
U. K.
,
2021
, “
Crack Propagation and Fracture Toughness of Additively Manufactured Polymers
,”
Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition. Volume 4: Advances in Aerospace Technology
,
Virtual, Online
,
Nov. 1–5
,
ASME
, p.
V004T04A027
.
32.
Do Kweon
,
H.
,
Kim
,
J. W.
,
Song
,
O.
, and
Oh
,
D.
,
2021
, “
Determination of True Stress-Strain Curve of Type 304 and 316 Stainless Steels Using a Typical Tensile Test and Finite Element Analysis
,”
Nucl. Eng. Technol.
,
53
(
2
), pp.
647
656
.
34.
Alshoaibi
,
A. M.
,
2021
, “
Numerical Modeling of Crack Growth Under Mixed-Mode Loading
,”
Appl. Sci. (Switzerland)
,
11
(
7
), p.
2975
.
35.
Tanaka
,
K.
,
1974
, “
Fatigue Crack Propagation From a Crack Inclined to the Cyclic Tensile Axis
,”
Eng. Fract. Mech.
,
6
(
3
), pp.
493
507
.
36.
Nicholas
,
T.
, and
Zuiker
,
J. R.
,
1996
, “
On the Use of the Goodman Diagram for High Cycle Fatigue Design
,”
Int. J. Fract.
,
80
(
2–3
), pp.
219
235
.
37.
Shanmugam
,
V.
,
Das
,
O.
,
Babu
,
K.
,
Marimuthu
,
U.
,
Veerasimman
,
A.
,
Johnson
,
D. J.
,
Neisiany
,
R. E.
,
Hedenqvist
,
M. S.
,
Ramakrishna
,
S.
, and
Berto
,
F.
,
2021
, “
Fatigue Behaviour of FDM-3D Printed Polymers, Polymeric Composites and Architected Cellular Materials
,”
Int. J. Fatigue.
,
143
, p.
106007
.
38.
Alshammari
,
Y. L. A.
,
He
,
F.
, and
Khan
,
M. A.
,
2021
, “
Modelling and Investigation of Crack Growth for 3d-Printed Acrylonitrile Butadiene Styrene (ABS) With Various Printing Parameters and Ambient Temperatures
,”
Polymers (Basel)
,
13
(
21
), p.
3737
.
You do not currently have access to this content.